

SDS PODCAST

EPISODE 927:

AUTOMATING CODE

REVIEW WITH AI,

FEAT. CODERABBIT’S

DAVID LOKER

Show Notes: http://www.superdatascience.com/927​ ​ 1

http://www.superdatascience.com/927

Jon Krohn:​ 00:00:00​ Welcome to another episode of the SuperDataScience

podcast. I'm your host, Jon Krohn. Today I'm delighted to

welcome the cool, well-spoken and super intelligent.

David Loker is my guest on the show. David is director of

AI at CodeRabbit, a bay area based company that

dramatically accelerates and improves code reviews

through. Yes, of course, ai. In today's extremely

interesting episode, David explains how CodeRabbit AI

agents work within their platform and the staggering

implications of this for how software is created. At the end

of the episode, we also dig into why he's impressed by

GPT-5 and we go big by opining on how intelligent

machines will transform society in the coming decades.

This is a great one. Enjoy.

​ 00:00:44​ This episode of Super Data Science is made possible by

Anthropic, Dell, Intel and Gurobi.

​ 00:00:53​ David, welcome to the SuperDataScience Podcast. It's a

treat to have you here. Where are you calling in from

today?

David Loker:​ 00:00:58​ I'm calling in from Los Gatos, California

Jon Krohn:​ 00:01:01​ Los Gatos. And just before we started recording, I tested

my tiny bit of Spanish. I thought for sure I'd be wrong

because it's a really silly town name. It stands for the

cats.

David Loker:​ 00:01:13​ It does. And we have little statues littered throughout the

town of cats. Yeah.

Jon Krohn:​ 00:01:17​ That's so funny. Well, we're not here to talk about that.

We're actually here to talk about another animal, the

CodeRabbit. So earlier this year you joined CodeRabbit,

which is an AI driven code review platform, your director

of AI there. And the idea behind CodeRabbit is to improve

developer productivity by harnessing a Gentech AI to

Show Notes: http://www.superdatascience.com/927​ ​ 2

http://www.superdatascience.com/927

provide context aware, expert like feedback to those code

reviews. David, tell us a bit more about CodeRabbit.

David Loker:​ 00:01:49​ Yeah, so I mean if you think about just sort of the

problem in general as a quality control mechanism, prs

are there to stop bad code from going into production.

And historically speaking, humans do this on mass. More

senior people are usually involved in this process. It takes

a long time. It's a big part of your job. It's a big part of the

enterprise process into making sure that code meets

certain standards before it goes into production. And as

we get into this new realm of AI generated code and

people are producing more and more prs every single day,

the human lift of going through all of that and making

sure that the quality bar remains high is becoming an

increasingly large problem. And so CodeRabbit is there to

help with that, right? We're there to speed up the time

from PR being opened to being merged.

​ 00:02:44​ We're trying to make sure that code that makes it into

production is of the highest standards possible, even if

you're having all this code being generated by ai. And so

that's what CodeRabbit, we're here to solve that problem.

We're trying to make sure that people can build things

because ultimately that's what engineers want to do. They

don't just want to sit here and read through line and line

and lines of code and making sure that there are no little

bugs and no little op by one errors in your algorithm.

They want to build things. And so we're trying to make

sure that that sort of more tedious aspect of the

engineering tasks while still super important, we're

helping as much as we can.

Jon Krohn:​ 00:03:23​ I have no doubt that there's a big opportunity here. A lot

of us have experience using Claude or Gemini or ChatGPT

for assistance with writing code and those tools do pretty

good jobs of giving us feedback on the code that we write.

But there's a huge amount of opportunity to build a tool

Show Notes: http://www.superdatascience.com/927​ ​ 3

http://www.superdatascience.com/927

that is built into your workflow and that is fine tuned to

be really excelling at this task. And so we'll talk about all

kinds of things in this episode that make that work well.

A lot of our listeners on this show are developers,

software engineers, but we also have a lot of listeners who

are data scientists or AI engineers and they might be

working more in a scripting environment, things like

Jupiter Notebooks and how does this kind of tool, how

does CodeRabbit work in that kind of context?

David Loker:​ 00:04:20​ So at the end of the day, regardless of whether myself am

working with Jupiter Notebook, whether I'm doing Python

scripts, whether I'm making a machine learning pipeline,

all these different aspects, I usually check that code into

some sort of platform, usually GitHub in my case, and I'm

usually making a pull request. I'm changing this over

time. I'm updating my workflow, I'm making changes to

my Jupyter Notebook. Now there are lots of things that

can go wrong. There's lots of things that I could do better.

There's lots of things I can make little mistakes. And so

again, I want to have some level of quality control and

finding those issues. So I'm not maybe even going down

all the way down to the model building level with some

mistakes in my data preparation. We all know as sort of

machine learning people, data prep is pretty much 80% of

your job.

​ 00:05:07​ I mean, getting the data from the source, cleaning it up,

getting it to the point where I can put it into a model is a

lot of work. And making sure that pipeline is reproducible

is a big part of this. You want to make sure you can

reproduce your results and so you're using source

control, you're making sure that those systems are in

there and that I can use those. And so still the quality

control is super important. Otherwise you're spending

maybe potentially millions of dollars training a model on

something where the data wasn't what you actually

intended it to be because you had some bugs in the

Show Notes: http://www.superdatascience.com/927​ ​ 4

http://www.superdatascience.com/927

process. And so even for those people, even if it's not just

building backend engineering systems in a different

sense, quality control is still super important. Finding

those bugs early on in the process so we don't end up

training a model on bad data. These are all still super

important problems to solve.

Jon Krohn:​ 00:05:59​ For sure. Yeah, sounds really useful for our data science

oriented listeners out there, but I wanted to have you

highlight that for all of them out there. You recently wrote

an article for the CodeRabbit blog, which I'll have in the

show notes called Pipeline AI versus Age Agentic AI for

code reviews, let the Model Reason Within Reason. And in

that article you contrast two different AI architecture

patterns. So tell me about those two patterns, pipeline AI

versus age agentic ai. Probably a lot of, I expect most

listeners have now drinking the agent AI Kool-Aid or at

least are aware of it, but we could probably do with kind

of your definition of age agent AI anyway since it can be

so ambiguous. And then contrast that for us with pipeline

ai.

David Loker:​ 00:06:50​ Yeah, so I mean just for anyone who doesn't know,

obviously Agentic systems, you're giving an LLM access to

tools. So rather than being a brain out a jar, it has hands

and it can do things. So that's a very crude definition. But

ultimately an agentic flow would then allow me to give a

command or a desired outcome to a system that uses

LLMs and it can go in a loop and it's basically a glorified

while loop, right? We're looping around, we're allowing the

system to think about what it wants to do, plan out some

sort of actions, take actions on tools, get the output from

those tools, feed it back in, and then it just cycles and it

cycles until it achieves its goal, whatever goal I set for it.

And the problem with that is that LLMs do hallucinate

and there's error, right? There's variant in the system.

Show Notes: http://www.superdatascience.com/927​ ​ 5

http://www.superdatascience.com/927

​ 00:07:42​ It's not a perfect system, it's not deterministic. And so

even if you have a 1% error rate, if you have a chain of

actions which goes up to a hundred, you're guaranteed to

have an error. I mean at least from a probabilistic

perspective. And so that is a problem. Ultimately it's this

little error is going, is chaining up. So at the end of the

day, the agentic flow can take you to places and take you

down paths that you may not have been able to think up

yourself. And so it can do a lot of really, really cool things

and I don't want to downplay that by any means. It is an

ongoing area of research and optimization in terms of

reducing the number of tool calls to achieve an outcome

is an act of area research that's very much worth

pursuing and will get better and better over time.

​ 00:08:35​ Our ability to verify those outputs as we go to tame and

tamp down on the air to make sure that we are getting

where we want to go is also being investigated and these

things are going to make forward progress. The pipeline

version of that is, I know to some degree which direction

this should take. These are the tools that should get run

in this order. I know for example, as part of maybe a code

review, I'm going to run static analysis tools. I know I

have to do that, so I'm just going to make it do that. I'm

going to let it choose to do it. I'm just going to do it and

I'm going to put the output from that in some form or

another into an LLM at a different time. So I'm going to do

that for it. And so I might have an entire pipeline that just

does that, grabs a bunch of contexts, formats it in some

way and gives that to an LLM to generate a final result.

​ 00:09:25​ So I don't allow it to go off and do its own thing. That's

just purely me directing it entirely, maybe using my

domain expertise or I have some sort of flow that I know

exists, I'm going to just do it that way. That is very brittle.

There's not a lot it can do outside of what I've directed it.

And so it's very limited if there's a situation that comes

up that doesn't follow that pipeline or needs some sort of

Show Notes: http://www.superdatascience.com/927​ ​ 6

http://www.superdatascience.com/927

variability in there, it's not really good at that. It's not

going to be able to handle that new situation. And so you

have those two contrasting approaches. Do I create

something that I know is going to do the same thing every

time? It's very easy to debug it is got a lot of nice features

to it or do I let it just go off and do whatever it wants and

maybe it'll run static analysis tools, maybe it won't.

​ 00:10:11​ Maybe it'll grab the library definitions from package

JSON, maybe it won't and which sort of blend of this do I

do? And that's usually where we get into this hybrid

approach. And I'd say most production systems lie in the

middle. There are things they know should be run like

static analysis tools in the case of CodeRabbit with code

review. And there are things where we need to allow some

level of exploration and that's where you might turn

things over to an agentic system like do some web queries

because we need to get documentation related to tools

that are libraries that are being used that we don't have

the documentation for it now currently. Or maybe we

need to go and pull files from a different repo because

this one is using something of yours that's changed

recently. Maybe we need to pull down an issue and

understand what exactly what problem are you trying to

solve in this moment with this PR and all that stuff isn't

always there. It isn't always present. It comes sometimes,

sometimes it doesn't. And sometimes you need to pull

down multiple pieces and really do an exploration within

reason. Again, you might put some boundaries on that.

I'm allowed to do this many tool calls, I'm allowed to

iterate this many times, I'm allowed to build up this much

context before I stop. So guardrails are still super

important in that context and that's what we do. We use a

hybrid approach to build a context window that we think

is optimized for the code review process.

Jon Krohn:​ 00:11:36​ Beautiful. I think I understand all this now, it reminds

me it might not be exactly the same and you can kind of

Show Notes: http://www.superdatascience.com/927​ ​ 7

http://www.superdatascience.com/927

correct me on this, but late last year Anthropic published

a very popular blog post kind of defining different kinds of

agentic systems and I think they might've called what you

call pipeline AI a workflow. And so they basically define

that there are two different kinds of agentic systems

workflows and real agents. And it seems like it's a pretty

similar, if not the same definition to you where in the

workflows like your pipeline ai, we are defining a

particular path that they flow down and you are limiting

to a great extent what an agent can be doing which might

bring you feelings of more safety, more security, more

control, but also you're limiting the potential for what

could be happening in an application. And so it makes a

lot of sense to me that you're doing this hybrid approach

between the two and trying to get the best of both worlds.

And that ends up creating what you described as the code

reviews then feel like they came from your best engineer

on their best day every time is the way that you phrased

it.

David Loker:​ 00:12:49​ Yes, I think that's the goal of any of these systems we

want to make sure that we're building. So if you think

about it just from a large perspective, I give you a PR to

review and I don't give you half of the files in the PR or I

don't give you the issue that it came from or I don't give

you the documentation related to standards or you don't

have any context of the code base at large, you're

probably going to not do a great job even if you're a

senior, even if you're a staff principal engineer, it doesn't

matter if you don't have context, you can't do your job. So

for us, I think the toy, the term is now coined, context

engineering has been coined. I don't know when exactly

that happened, but it happened fairly recently and the

reality is most systems I think have been doing this right?

​ 00:13:40​ Very few systems are thin prompts with a few one-shot

examples that then you just interact with. Most systems

of any real value are doing some level of rag or some level

Show Notes: http://www.superdatascience.com/927​ ​ 8

http://www.superdatascience.com/927

of context gathering in order to make sure that the

information that goes into the LM to make that final

output has what it needs. And the main thing that we're

trying to tamp down is you also want to make sure it

doesn't have anything else. And that's a tricky part

because you can just shove stuff in there and especially

as we get larger and larger context windows, it is tempting

to just say, I'm just going to throw everything in there.

Imagine we have 1 million, 2 million, 10 million contact

size windows. There are other issues there. There's the

ability for the LLM to actually pay attention to that entire

context window. It can't pay attention to it equally, it

tends to have a U-shaped pattern where it pays attention

to the beginning and the end far more than the middle.

And there have been multiple studies at this point that

show that when you put in information, even if it's

accurate, the LLM performance will degrade on a task the

more you put in there. So you don't want just arbitrary

things in there, even if they're factually accurate. And so

this context engineering is extremely important.

Jon Krohn:​ 00:14:55​ I'm glad that you brought up context engineering because

that is actually the next topic that I had, but really

quickly before we get to context engineering in a bit more

detail, it occurs to me that there is a term that we've been

using a lot and I know that our listeners are a technical

audience and so for most people they are going to know

what a PR is, but since we're using that term so much in

this episode, we should probably define it. David, do you

want to tell us about pull requests?

David Loker:​ 00:15:20​ Yes. So yes, prs, what are they? Yeah, pull request is the

idea that in a get platform specifically, if I am going to

make a change and I'm ready to potentially release that

change or at least have that change reviewed by

somebody, I'm going to try and merge my branch, which

has this feature say which a bunch of new code, a bunch

of changes to code, I'm going to push that up somewhere

Show Notes: http://www.superdatascience.com/927​ ​ 9

http://www.superdatascience.com/927

so that someone can look at it. And so that pull request is

basically me saying, okay, I'm requesting that somebody

look at this. I want to merge it from my branch into say

the main branch or dev branch to sort of eventually roll

out to production and it's going to show you all the

different lines that are changed, all the additions. I'm

going to have a summary in there. I'm going to have a

bunch of information that I've put in and so someone can

go in and sort of decide are there problems, should I do

this differently and make comments?

Jon Krohn:​ 00:16:11​ That was a great definition. There's something really

funny in the way that you described it that I'm going to

dig into a little bit more, which is that before the

pandemic I was teaching an intro to deep learning course

in person in New York and somebody who was new to it

said to me, can you explain this pull request thing to me?

It seems like it's actually a push and you actually use the

word push in your definition are you kind of pushing code

up? So what's up with that? Why is it called a pull

request? Not a push request?

David Loker:​ 00:16:43​ Yeah, that's an interesting term. I think the flow of it, if

you think of it, the reason why I use that term is because

when the commands that I enter is I'm just so used to it, I

push my

​ 00:16:53​ Branch up to the cloud in this case. And so that's the

pushing aspect of it. And I think pull requests you're

talking about you're pulling your code from one branch to

another. It's kind of an antiquated term I guess at this

particular point, but it is kind stuck around. You're not

really pulling anything per se. But yeah, I'm essentially, if

I'm thinking of myself then as Maine let's say, or dev, I'm

then pulling code from a different branch into my branch

I guess. But yeah, merge emerge is another way to think

of it. I guess it's just eventually that's the final command

that gets run.

Show Notes: http://www.superdatascience.com/927​ ​ 10

http://www.superdatascience.com/927

Jon Krohn:​ 00:17:24​ Yeah, yeah. Anyway, thank you for indulging me with

both my pull and push request questions. Let's talk more

about context engineering, which is it's one of the biggest,

most talked about topics in AI today. Ed Donner who's

someone that I've done agentic AI workshops alongside,

we were putting together another workshop recently and

he said, we've got to have a big section on context

engineering pretty early on. This is the new big thing that

everyone's talking about. And so the CodeRabbit website

describes context engineering in your case as feeding

LLMs not just with code but also with intent

dependencies and linked issues. Tell us more about this

context engineering and what it means for you at

CodeRabbit in particular.

David Loker:​ 00:18:15​ So the context in this case, if I just want to give a brief

definition of what I mean by that is the information that

I'm eventually going to feed into an LLM to then decide

the answer to my query. In this case, let's figure out what

the bugs are, let's give me some comments about this pull

request. And in that case, imagine I just give it the, that

context is there and it might give you some interesting

insights and from a certain perspective, very low level

perspective. But if I don't understand what this PR is

about, if I have no description as a human and I'm

looking at it, it's going to take me a while to try and

reason out what was this person trying to do and how

does this fit into the larger picture of this code base? And

so the context window, we need to start adding more

information.

​ 00:19:06​ That context engineering is how you go about doing that.

How do I decide what information I should get from

where, and then when I grab that information, if it has

too much, how do I decide what I need to do to that to get

what is necessary into that context window, which is the

context for the LLM. And so that code, the engineering

task about how you do that, there's lots of different things

Show Notes: http://www.superdatascience.com/927​ ​ 11

http://www.superdatascience.com/927

you could do, right? There's lots of different areas that I

could grab information from. I could get you pointed out

the issue, I can go and I can get the description of the

issue and it could potentially lay out an entire PRD or

product requirement and say, this needs to implement

the following things, or maybe it's a bug and here's the

bug, here's the output of the bug and this is where it

came up.

​ 00:19:53​ It might be an image in there and stuff like that. I need to

potentially bring this information to understand the

context of this code to better look at it and say, oh, this

was supposed to do X, but it's kind of doing a little bit

different than what it was intended to do. And in some

cases maybe there was a decision made that changed that

and maybe there's other contexts somewhere else like a

notion document related to a design of what this PR is

supposed to do that I could pull in where I'd be able to

say this was the decision that was made after this issue

was formed and the issue might actually link to that and

I can pull that information in too. And then it comes

down to, okay, now I need to understand where does this

PR sit? Where does the code that I've changed sit in a

relationship to the rest of the code base and is there

information I need from there?

​ 00:20:40​ So for example, if I change the a I of a public facing

function that gets used elsewhere, I need to know that

where it gets used and in what context that gets used. I

may have just broke something. It's not even in the pr, it

has nothing to do with this. I need to understand that

that gets used elsewhere. I need to bring that in order to

make sure that the LLM knows that. And so we do

something called a code graph, which we connect pieces

up together to be able to build an understanding of how

the pieces of your code interact so that we can do that

and we can bring that information in. We also have

verification loops which go in and can search the code

Show Notes: http://www.superdatascience.com/927​ ​ 12

http://www.superdatascience.com/927

base to understand where are these pieces coming from,

how do I find the relevant code snippets that might exist

elsewhere so that I can bring in that context and

understand to a large degree what is happening inside

this pr, bringing all that information in. If I was to give

that to a human, they would finally go, okay, I get it now.

Right? This makes sense to me now I don't have to think

about it as much, but that information needs to be there.

Jon Krohn:​ 00:21:41​ Awesome. This sounds really powerful to be able to have

all that extra context. And it sounds like it enables your

tool, it enables CodeRabbit to go from a what to kind of a

why behind a code change, which would be invaluable in

code reviews allow us to catch more bugs and maybe

move away from just catching bugs to shaping better

design decisions for the code, for the whole code

database.

David Loker:​ 00:22:15​ So there's a few things there when it comes to finding

bugs. I was talking about the API example, you could find

a bug there. There could also be things that we've

discovered over time in the way that you typically do

something like the way authentication is handled, where

that's a higher level piece of information that might be the

way that you've done it doesn't align with the standards

documentation that you have. This is the way you should

handle user information. You're doing things not quite the

right way or maybe there's a way that you are supposed

to deal with secrets and with API keys and all these other

things and you don't do things quite right, but that

documentation that we've pulled in says that this is the

standard, this is where things live and you've changed

that. We need to think about fixing that. And we have

things called refactor suggestions, which typically are

around those things which are not necessarily bugs

specifically, but could be in the way that you've

architected your solution. And that could come from

other things. Learnings is an example. If you are chatting

Show Notes: http://www.superdatascience.com/927​ ​ 13

http://www.superdatascience.com/927

with a human and human says, we don't do things this

way, we do this, CodeRabbit could pick up on that and

essentially bring that information and store that for

future use so that we make sure that someone else

doesn't make that same mistake. Right?

Jon Krohn:​ 00:23:23​ Very cool. I like that a lot. It sounds like this extra

context, all this context engineering might also be helpful

in reducing hallucinations.

David Loker:​ 00:23:32​ So being able to back onto something. So rather than

letting the LLM fill in the missing details, which is where

you start to get hallucinations, it fills in sort of from the

mean or the median of its information and makes

assumptions. We provide it with this context and then

with that context we can do a verification. Does this

comment actually reference something that's real? Does it

have evidence to back it up? And that verification allows

us to significantly prune out hallucinations.

Jon Krohn:​ 00:24:03​ Love it. Another great reason for people to be exploring

context engineering for whatever application they're

involved with. Let's move on to another really important

part of agents, which is tools. So you've pointed to

research in blog posts about tools like Retool and I don't

know if I'm pronouncing this right, Leret.

David Loker:​ 00:24:26​ I don't know the pronunciation of that one either. So

yeah, I'll let you take a stab at that.

Jon Krohn:​ 00:24:31​ Well, I can spell it. L-E-R-E-T. And so retool loret, they

show agents can be trained to call tools more intelligently.

So tell us about this, these kinds of research

advancements and what it would take to build the kind of

high quality domain specific data sets that could actually

teach agents to reason like experts in code reviews taking

advantage of these tools.

Show Notes: http://www.superdatascience.com/927​ ​ 14

http://www.superdatascience.com/927

David Loker:​ 00:24:57​ So this has actually been a big area of research, not just

from the open source community, but in general it's been

a large effort both for philanthropic and OpenAI as part of

this recent wave of age agentic systems. So even in chat

GBT now, you can hit that little button and give it access

to the web or give it access to other sources of data. And

the way that they do this is they want to make sure that

one, which tools are available, but also you're calling

those tools correctly. This is again, and this is an LLM,

this is not me programming in an API call. This is a

system trying to design the API call on the fly. And again,

there are errors in that, right? And so you can use

reinforcement learning to bias it towards correct

understanding of how you build an API call in this case

an MCP call for example, or using a tool.

​ 00:25:51​ And you can also use these techniques. So imagine I have

an outcome that I want and I have access to let's say

read, write a bunch of different list commands and things

like that. And I'm trying to find something on your

computer. There are lots of different avenues that could

lead to the right answer. If I want to find in a bunch of

logs inside some large system, the logs which have

specific values, I could just do a grab, right? Do that's a

simple tool call. I could also list the files, go through the

one by one cat everything out and start repping the cat.

And so there's efficient ways of doing stuff and there are

inefficient ways both of them lead to the right outcome,

but one of them wasted a lot of tokens and wasted a lot of

time. And so you have a lot of opportunity there to not

only train how to use the tools, but maybe how to use the

minimum number of tools required to get the answer that

I need.

​ 00:26:46​ And so that's a really important area of exploration right

now as we've realized that giving agents tools is necessary

for them to do anything really meaningful to be able to

interact with the world, to interact with us, to collect

Show Notes: http://www.superdatascience.com/927​ ​ 15

http://www.superdatascience.com/927

information. All this stuff is we need tools and we don't

want to tell them like a pipeline system. We don't want to

tell them exactly what to do. We want them to decide

what to do, in which case they need to get good at it, they

need to figure out what I should call, when I should call

it, how do I use it and what do I do after I get that

information? What do I do with that? And so all this stuff

retool, we pronounced it L-E-R-E-T, both of those are

avenues that are investigating that optimization problem.

I think we need to keep going down that route. We need

these things to get better and better. So again, we don't

pay as much money as we're trying to use these tools.

Jon Krohn:​ 00:27:40​ I looked up the LT paper while you were speaking and so

I'll have that for sure in the show notes as well as the link

to retool. And I do think LT is correct because it's an

abbreviation of language empowered retentive network, so

presumably lore and also of course it's a play on Lynette

from Jan Laun. So there you go. I mean it has to be, it

can't be a coincidence. And then also really important

question for you here, David, when you're catting out a

file in your part of the world, you call it gatting out

David Loker:​ 00:28:19​ In Los Gatos, if you don't do that, they catch you. That's

the real issue.

Jon Krohn:​ 00:28:23​ Exactly. So onto the next question, the CodeRabit website

features a case study for something called plane like

airplane of all the different homonyms or homophones

out there I guess for plane. So plane is a project

management platform and they share improvements with

developer productivity. If AI handles more of the repetitive

review cycles, including things like tedious refactorings,

what new dimensions of productivity should

organizations start measuring beyond lines of code, which

has always been an annoying one for me. Velocity bug

counts. How can we be measuring productivity if we have

machines generating most of our lines of code,

Show Notes: http://www.superdatascience.com/927​ ​ 16

http://www.superdatascience.com/927

determining most of our velocity and handling most of

our bugs?

David Loker:​ 00:29:16​ Yeah, I think it's an interesting problem. Ultimately in

terms of return on investment of tools that get used,

there's a lot of different things that you could measure or

one is just satisfaction overall of developers, but if you're

measuring developer productivity, you cannot use lines of

code at this particular point. If you're involving AI

generated code tools into their workflows, you're allowing

that, it just becomes meaningless. Even number of PRS

opened is not necessarily indicative. I think we're going to

get started to get into this realm of how do you measure,

for example, the productivity of someone who's in the

data science machine learning area. For me, when I was

working at Netflix and stuff like this, it was more around

did we have a hypothesis execute on that hypothesis and

get a result? And so that was our measurement because

of the fact that the number of lines generated in this

example don't necessarily lead to a good outcome.

​ 00:30:13​ And it's really hard to figure out whether or not

somebody's doing something when it's lines of code. So

it's going to get down to I think the idea of features. Are

you building things? Are you coming up with those ideas

and executing on them? Because at the end of the day,

prototyping, rapid prototyping is going to become

increasingly and increasingly a solved problem. And so

are you bringing that? Do you have an idea? Are you

building that thing in a prototype and then are you then

bringing that to production? So that's going to be the

thing. It's not going to be about code lines being

generated and as we get better and better with our AI

code review, we're going to be preventing then those big

bugs from going out and we're going to be preventing

long-term bugs from happening. So we can't measure the

same degree we used to the number of bugs in the

platform, we could measure that before, but as we do

Show Notes: http://www.superdatascience.com/927​ ​ 17

http://www.superdatascience.com/927

this, that's not going to be an issue. And so it's going to

be this creativity, I think, and this ability to bring things

out into the world. So that level of velocity becomes a little

bit different.

Jon Krohn:​ 00:31:16​ As all of your answers have been. You're an outstanding

podcast guest. It's great having you have great answers,

lots of information. No umming and aing. Pretty

impressive so far in this episode, we've largely been

talking about software development in general. I'd like to

move towards some more AI engineering specific

questions now for a bit, which builds on your experience

as an AI leader, for example, as director of AI at codera.

So CodeRabbit provides flexibility to both large

enterprises, small teams supporting self-hosted

deployments, multiple LLM providers, and highlighting

that companies can stay in control of their AI

infrastructure while maintaining full data privacy. How

should somebody who's responsible for the AI in an

organization like you are resolve this kind of tension

between a bring your own AI culture, which boosts

individual developer productivity relative to a coherent

governable AI dev tool stack that ensures enterprise wide

consistency, security control?

​ 00:32:26​ It's kind of interesting, actually. There was, I recently

read a stat that something like 90% of people, and this is

going beyond people just working on in ai, but in

enterprises in general, 90% of employees use a personal

ChatGPT subscription or maybe not even as a

subscription, they're just putting it into the free tool and

using that augmenting themselves without there being

any kind of official support in the organization for

ChatGPT. So yeah, I mean that's kind of giving generally

some kind of stats on how common this is and I'm sure

the same kind of thing is happening with AI engineering

people, whether you're aware of it or not throwing things

into Claude code and getting great results, but that might

Show Notes: http://www.superdatascience.com/927​ ​ 18

http://www.superdatascience.com/927

not meet the security requirements of your organization.

So yeah, how do you resolve this tension?

David Loker:​ 00:33:15​ Yeah, so for us, we have zero data retention policies with

the organizations and then we promote people to use then

the systems internally. So we have API keys and we have

subscriptions to these systems that we give to our people

so that they can have access to the latest tools and do as

much work as they need to with them and leverage them

in the best way possible. I do think there's a learning

curve when it comes to using these systems, so having

them there so they can interact with them and figure out

which ones work and which ones don't. Also ends up

leading, I think to better outcomes in our own tools as

we're thinking about the prompts that we engineer and

the way that we interact with LLMs, the experience that

you gain from using them in all these different aspects of

your work actually I think really, really help building the

product itself.

​ 00:34:04​ And when I think about how people would think about

using CodeRabbit and how we are very, very protective of

people's data. I mean we're talking about code here, this

is people's ip, it's the bread and butter, it's the soul of

their company. And at the end of the day, we're very, very

careful around that kind of stuff. So everything gets spun

up exactly once during the code review into a completely

isolated environment in sandbox and gets immediately

torn down the second that it's done. And we don't store

any of that code there. And the reason we don't do that is

because we understand the level of importance there and

getting the compliance that we have, having that zero

data retention policy with the various LLM providers. That

way people who use our system know that none of that

code that goes through there, none of the documentation

that we pull in for context engineering, none of that stuff

is going to end up inside someone's system and is going

to be stored there.

Show Notes: http://www.superdatascience.com/927​ ​ 19

http://www.superdatascience.com/927

​ 00:34:57​ It's all gone. And so they don't have to worry about their

stuff being leaked out through these LLMs. And I think

having that, if your developers are using AI and they

should be to a degree, I think at this point in time you

need to take a step forward and be like, I'm going to

embrace this. I'm going to make sure that I have these

things in place with the LLM providers that my developers

need to use and want to use to make themselves more

productive. And I'm going to have those policies in place

of this is making sure that none of that data gets leaked

out. If for whatever reason your system requires even

more stringent guidelines and using LLMs maybe on your

own infrastructure, provide that. So take some time to get

that set up so that people can then use the same

underlying ideas behind making themselves more

productive, asking LLMs to do certain things for them and

it remains entirely within the boundaries of your own

infrastructure. So that's sort of something from our

self-hosted perspective that CodeRabbit does. We allow

you to go on and install it on your own infrastructure if

that is a requirement, but our SaaS system is extremely

secure and none of your code will leak out into any of

these outside systems and nothing will ever get stored

there.

Jon Krohn:​ 00:36:17​ Nice. Great answer. Another tricky thing that comes up

for a lot of us developing AI systems is how to allow our AI

systems to learn from user behavior but still feel

confident that as a result of that learning, as the AI

systems have more power to learn to do things

themselves based on some context or based on

interactions with a particular user, it's harder and harder

to test that. And so for example, CodeRabbit, one of its

features is Agentic Chat, which is not only reviewing code

but also generating tests, creating issues, resolving

feedback. And this incorporates learning from

conversation from chat with the users. And so developers

are completely effortlessly teaching the system what kind

Show Notes: http://www.superdatascience.com/927​ ​ 20

http://www.superdatascience.com/927

of feedback they want, but for all of us designing AI

systems, this can be a scary thing because we can't test

that particular version of the model that's now learned

these preferences. So how do you handle those challenges

and what are the opportunities?

David Loker:​ 00:37:35​ We listen to customers a lot, so we talk to a lot of

customers all the time and we are ultimately receiving a

lot of feedback all the time. And when it comes to things

that we can do, we listen to them and we also watch open

source and see what happens there. So there's a lot of

open source. Also at the end of the day, we use our own

product, so we've interacted with the learning system,

we've seen where it works and where it breaks down and

we've tweaked it and we are constantly using our own

system in all the different ways that we have. We are

integrating, we're an MCP client now, so we've hooked up

our MCP servers, we've seen the exact details of how it

gets used, the learning system, we use that all the time. If

something comes out and sort of a library mismatch

happens, we're like at Code Revit, you should know this

library is being used, remember this.

​ 00:38:26​ And then the learning get added and we'll see how that

impacts future reviews. So we use our own system a lot.

We watch open source, we get feedback and we're

constantly just making sure that we are listening to the

customer. And I think that's the super, at the end of the

day, that's what we're trying to do. We're trying to provide

value to the customer and if we're not listening to them,

we're not doing our jobs. And so I think the be all end of it

is that when you're not in a place where you can just take

that information and use reinforcement learning, we're

not going to be able to do that In this case, it makes

perfect sense. We don't want to store people's code so

we're not training on people's code and that's a trade off

that we're willing to make to ensure that people's security

and people feel like they can trust what's happening.

Show Notes: http://www.superdatascience.com/927​ ​ 21

http://www.superdatascience.com/927

Jon Krohn:​ 00:39:13​ Nice. Speaking of security, a big complaint that I see so

much in social media around using Gen AI for code

generation specifically, but you can see how that ties

pretty closely to what we're doing here. We have code

reviews happening with gen AI systems and agent

systems. One of the big complaints is people will say, oh,

it's not using best practices all the time. There's all kinds

of security holes that end up getting picked up from Stack

Overflow just by spitting out some result that works, but

has all kinds of security holes in it. I come across this all

the time and it seems to be, it's especially one of the

things that as we've gone from GPT two to three, to four

to five and the code generation capabilities have become

more and more threatening to software engineers, it

seems like I'm seeing this kind of like, oh, well obviously

when it's GT two, the code is so bad, there's no threat.

David Loker:​ 00:40:22​ Yes, that's true.

Jon Krohn:​ 00:40:23​ And then GPT-4, you're starting to see, okay, well there's

this wide range of things that this generative tool can do,

but look at all these places where you still absolutely

need a human in the loop. I can't be replaced. And now

that we're kind of at G BT five, the security thing comes

up a lot. I don't really buy it and I wonder if you have any

thoughts on that in particular, CodeRabbit emphasizes

reducing alert fatigue by providing actionable, prioritized

security insights. So yeah, it seems like CodeRabbit has

kind of caught onto what I see is that actually machines

can be way more vigilant than humans in spotting issues

and could probably create a more secure system than a

human anyway.

David Loker:​ 00:41:07​ Yes, I agree with that statement because of the fact that

machines don't need sleep, they don't need food, they

don't lose attention, they just sit there and they stare at

this thing and they're just going to keep staring at it until

they find whatever that they need to find. And the more

Show Notes: http://www.superdatascience.com/927​ ​ 22

http://www.superdatascience.com/927

we teach them, and the more we get better at this from a

context engineering perspective, the more and more

unlikely it is that a human's going to find some security

issue that we missed. And I think what people are coming

from when they talk about code generators learning from

Stack Overflow and some security issue, is the

assumption essentially that the training data gets

replicated and to a certain degree there is, we have to

understand that these are probabilistic machines and so

at the end of the day, they are picking and choosing

things based on what they see very frequently and they're

trying to mold that into the surrounding context of

whatever your code is right now so they can output things

that are novel.

​ 00:42:07​ They do output things that are novel. They're not a

database, it's a probabilistic machine the same way that

our brains are probabilistic machines. Now, will they

make mistakes? Yes. That's why we need things like Code

Revit. They're going to make mistakes. They're getting

better and better all the time because I can take that

initially trained probabilistic machine and I can do a lot of

stuff to it after the fact. I can make sure that when I

output code, I run it through some system looking for

security issues and if it finds it, I can rate that low and

one that didn't have that problem, I can rate up and

guess what, this reinforcement learning technique over

time is going to remove these issues and they're putting a

lot of effort into this, a lot of effort, a lot of money, a lot of

human effort into this process of labeling and getting this

feedback and iterating on it.

​ 00:42:56​ These systems are going to get to the point where they're

significantly better than people at most of these tasks. My

hope is, I watched this talk, I think it was about a month

maybe two ago from Andrew ing where he said he brought

up a really interesting point, okay, coding has shifted

dramatically from the seventies. You think about going

Show Notes: http://www.superdatascience.com/927​ ​ 23

http://www.superdatascience.com/927

back punch cards and everybody's like, okay, this is very

tedious. There are very few programmers at that

particular point in time, and then we go into symbolic

computing. You're talking about doing things like just

doing machine level code, right? Again, super tedious

compared to what we do now. More programmers came

around, but it's significantly easier. People are doing

punch cards, this is way too easy. Then you get things

like cobol, right? And then all right, now it's way easier.

People can do this high level representational language to

be able to get things done on a machine and the people

who used to code in machine language are like, this is

way too easy.

​ 00:43:52​ These are not coders we're coders. It constantly has this

progression. You get simpler and simpler, higher and

higher order languages and you get not less coders, you

get more engineers. So we just changed the definition of

what being a software developer actually is. And so I

think we need to take a little bit of a step back and it's a

frightening moment. I get it. I really do. I get it. But if we

take a step back and we think, what is this going to do?

Most likely it's going to allow a lot of people who

previously would never have engaged with the idea of

building software to suddenly engage with building

software. And so if we allow for that, if we allow for that to

expand our definition of what it means to be a software

developer, if we just allow for that for a moment and we

let these people stumble through into this new world, we

get to greatly expand the amount of things that are going

to come out.

​ 00:44:45​ The imagination that we get to now engage with through

software is going to be greatly expanded and I think we

will benefit from that as a society, as other software

engineers. We are now going to be engaging with this on a

deeper level, and I think we are going to see people move

towards over the next five, 10 years to can I talk to an AI

Show Notes: http://www.superdatascience.com/927​ ​ 24

http://www.superdatascience.com/927

system in a way that leads to the outcome that I want?

And we still might need the understanding of large scale

systems and when this gets deployed, I need to make sure

because do I use Kubernetes? Do I use Cloud Run? Do I

use Redis as a cache in this instance, do I not? Some of

these questions, there's multiple right answers, and

choosing those can be difficult and maybe those expertise

levels will stick around a little bit longer. But I do think

this is a good thing, generally speaking,

Jon Krohn:​ 00:45:36​ Yeah, we stand more and more on the shoulders of more

and more giants and we abstract away more and more of

the complexity. I'm glad that I don't have to be worried

about punch cards for example. And I have a long

question now that listeners are going to have to bear with

me on this. I guess it gives you a chance to get some

water or something while I go through this long question,

but a lot of what you've been saying leads us into this

discussion of vibe coding. So Vibe Coding was coined I

guess about a year ago by Andre Carpathy. I can actually

look up the exact tweet. So it was February, 2025. This

year he popularized this term vibe coating to refer to

coding entirely via prompt and basically forgetting that

the code even exists underneath. So kind of another layer

of abstraction on top of all the layers that you've been

talking about, punch cards, cobalt machine code, and

since then the term has been embraced by some people.

​ 00:46:47​ So many technologists, investors, media figures have

embraced the term. Companies like Lovable, which allow

you to go from a prompt to a working application has

reached a nearly $2 billion valuation recently. Meanwhile,

there are other folks who think that vibe coding think of it

only as a negative term and are hesitant to jump on the

bandwagon. Maybe this kind of relates to my security

concerns question that maybe it's the same kind of

people. This probably an overlap in the Venn diagram, but

you've even noted in the CodeRabbit blog how studies

Show Notes: http://www.superdatascience.com/927​ ​ 25

http://www.superdatascience.com/927

find that AI tools, AI coding tools can add up to 41% more

bugs to your code. Yeah. So if AI generated code quality is

so poor and Vibe coders aren't really engaged in the

specifics of the creation of that code, wouldn't the code

reviewed process be one of ai? So if you have one AI

system generating code and then another AI system

reviewing code, how do you see this kind of future playing

out? What are the dynamics really like? What are the

positives of that scenario and what are some of the risks?

David Loker:​ 00:48:06​ Yeah, I think this is an interesting point in time. I mean,

we can't deny that This is one of the more interesting

points in time. Even if you hate the idea of vibe coding

and you hate this idea of prompt only engineering, this is

unique and we're not going to be seeing we're going to be

in this point for a period of time and then suddenly things

are going to shift again. So let's enjoy this to a degree. It's

interesting. My sister-in-law built an app using Lovable in

the afternoon, and ultimately it's purely based on an idea

of something she wanted to build. She has no idea about

anything coding related. Yes, vibe coding. I think maybe

the term has had a negative impact on the overall

progression of what could have been if maybe this term

wasn't there for people to latch onto and have this sort of

negative feedback towards.

​ 00:48:51​ But the idea behind being able to use AI to create

something without knowledge that I have personally is an

amazing thing. And so we need to take it for what it is.

Does it introduce tons of problems? A hundred percent.

That app that my sister-in-law generated was not

production ready, it was a prototype. And prototyping

with these systems is extremely valuable. As we all know.

It takes usually a long time to get to a prototype. There's a

lot of effort that goes into that just to check whether the

idea is worth anything before I maybe spend a ton of time

and a ton of money putting something out and making it

production ready. Maybe I should test it first. And this is

Show Notes: http://www.superdatascience.com/927​ ​ 26

http://www.superdatascience.com/927

kind of an entrepreneurship's dream in a way. You want

to be able to test things and fail fast and iterate, listen to

people iterate again.

​ 00:49:40​ And once you get something, then spend some effort

making the choices that you need to make it production

ready to get rid of all those bugs, make sure this thing is

bulletproof or whatever you want to say. But we still need

that initial period and that still brings in more people and

creates more jobs and makes the need for software

developers even more. The only reason why I don't like

the term vibe coding as much is because it makes people

think that the only way to use these systems is through

that mechanism. I'm just going to prompt not going to

care about the code. You can do really deep and

meaningful work with AI generated code and you can be

an engineer and looking at that code and making sure

that the decisions, the high level decisions being made

are accurate and checking it over and making sure that

why are you doing this?

​ 00:50:30​ Why are you doing scope creep? That happens a lot to me

with cloud code. The scope creep is real. And so you can

engage with these systems in a very, very deep level that's

very intellectually engaging and still requires a lot of

software engineering prowess, but you can prototype with

them just in the vibe co way. And that is very, very

valuable. And that's why I think a lot of VCs have been

latching onto it. And a lot of people are really excited. The

idea, for example, of a non-engineer coming in and

creating an app that skyrockets that was never even

remotely possible at a certain point without a lot of effort

from that person. So just think about again, the amount

of human imagination that we're bringing to bear into our

world, the number of things we could potentially be

interacting with at some point that are just would maybe

never have come to be. I still think that that's the reason

to be excited about it and to ultimately embrace it.

Show Notes: http://www.superdatascience.com/927​ ​ 27

http://www.superdatascience.com/927

Jon Krohn:​ 00:51:29​ It's an exciting time for sure where we are reducing over

just a few years. We've seen you talk about effort there.

Going from some app idea to having a working prototype,

we've reduced by thousands of times, maybe millions of

times, the amount of time and effort required to get that

up and running. It's crazy.

David Loker:​ 00:51:50​ And this is ultimately CodeRabbit fits into this picture.

You go from lovable generation, you put CodeRabbit in

there, and you're making sure that your system at least

has this bug checking going on. So if you don't

understand what's happening, it can point things out to

you. You feed that back into your AI system and it can fix

some things, right? And so our system fits into this new

model really well. And I think the reason why we are

doing as well as we are and why our system is becoming

more and more of just a standard requirement is because

of the level of people that are now engaging with software

engineering. They just need this. They don't necessarily

have a whole team behind them either, right? They have

one person vibe coding an app. Somebody's got to look at

your code. And if you look at your own code, as we know,

reviewing your own code is the biggest fo PA in software

engineering. So having at least some level of third party

review, I think our tool is absolutely essential as we move

forward into this new sort of world.

Jon Krohn:​ 00:52:47​ I agree with you on everything you've said and it was

really interesting and entertaining and kind of gives us a

bit of the, it brings back to me some of the awe around

what we're going through. I think it's easy to feel stressed

and intimidated by all that's going on, but really you can

kind of reinterpret that same emotion as awe and

excitement. Speaking of awe and excitement, I like you,

I'm a big fan of GPT-5. I think that it's an impressive leap

forward. So I did an episode on GPT-5 recently, episode

number 916, and it, it's a pretty positive review. A lot of

people have been pretty negative about the GPT-5 release.

Show Notes: http://www.superdatascience.com/927​ ​ 28

http://www.superdatascience.com/927

The cover story on The Economist the week that you and I

are recording is about how LLMs are plateauing and what

does this mean for the trillions of dollars that have flowed

into the stock market and are being invested in AI

systems.

​ 00:53:51​ The Economist article is talking about how there's no

longer so much hype around God-like AI systems coming

around, and I don't really get how GPT five has changed

so many opinions around this because your own

benchmarking, so on the CodeRabbit blog, you have a

post which I'll have in the show notes called

Benchmarking GPT-5, why it's a generational leap in

reasoning. And you described G PT five in that article is

delivering this significant leap forward. So what in your

view is so great about G PT five and how is it a big leap

forward and not just the kind of minor incremental gain

or even step backward that so many critics have come up

with?

David Loker:​ 00:54:39​ So when I'm reviewing that, I'm reviewing it right from our

perspective in our particular use case. And we use the

reasoning aspect of it pretty heavily when it comes to the

code review process that system is that ability to reason

through is extremely important when it comes to trying to

find errors that might cross a lot of different pieces of the

context window. So the reason why I call it generational

leap is because the gains in our evaluations were so

significant that I hadn't anticipated it. So the system that

we go through every time we're evaluating prompting and

we're evaluating new models, we're trying out new ideas,

we have a set of prs of pull requests that are designed to

be difficult. And I was getting, when I first got a join

CodeRabbit, we were getting maybe five or six of those

really hard prs correct at that particular point in time.

​ 00:55:36​ And we've been steadily increasing that by doing better

context engineering and doing better things with where

Show Notes: http://www.superdatascience.com/927​ ​ 29

http://www.superdatascience.com/927

we're pulling data from and how we're doing our

prompting and this and all kinds of different things. And

so we get that up to maybe 10, right? And 10 things that

we're getting correct. Out of 25 of these hardest prs, we

have many more in terms of overall, but these are the

hardest set that we could come up with and we sort of

pruned it down to. And then we see Opus Opus come out

and Sona four come out and it goes up to about 12. So

this is a pretty big jump. And then we go to G PT five and

we goes up to anywhere. But depending on, again,

non-determinism goes between 18 to 21, correct out of

this 25. And that's a massive jump. I mean, I can't deny

that that's a massive jump.

​ 00:56:20​ And so I see this and we start going like, okay, something

wrong. That's our first interpretation. Is it something's

wrong, right? We're not getting this right. And so we do a

deep dive into it and ultimately we see some really

interesting things when it comes to the way that it

reasons and the way that it follows the path of code

through multiple files across many, many different lines,

pulling in context in different places. And really I saw

some things. So I taught in college logic as a class when I

was doing grad school, and I saw some things in there

that human beings have a hard time doing when it comes

to logical thought of you have a set of axioms and I'm

following these logical rules to reach a conclusion. And I

saw some things in there that I thought were interesting

that I hadn't seen from other models before.

​ 00:57:12​ Being able to use a negative in a chain of thought I hadn't

seen before. So the fact that this thing over here doesn't

exist implies the following things to happen as a result of

multiple levels of logic deep. And I was like, that is really

cool. That was something that I thought stood out to me

is almost right away with some of the examples. But also

just being able to say, if I assume that you fix the bug

that I reported earlier, then the following things have to

Show Notes: http://www.superdatascience.com/927​ ​ 30

http://www.superdatascience.com/927

happen again. That sort of multi-layered assumption,

changing your worldview by shifting your axioms is a

difficult things even for a human being to do. And so I

saw this happen again and again and again, and that's

where I started to be like, this is really interesting. And I

just saw things that I didn't see in other systems. The

hallucination rate also dropped dramatically. The

negative sentiment that we got in response to this

dropped dramatically. And so all these things combined

and I was just like, for us, this is a massive leap forward.

Jon Krohn:​ 00:58:15​ I think that part of why people didn't have such the shift

from GPT three to GPT four that allowed machines to go

from being able to tackle tasks that took humans maybe

like 10 seconds to tasks that took that take humans

minutes and that for a huge number of simple queries

that you could just put into a chat on regular day-to-day

questions. I think that that felt like a really big leap GPT

four to GPT five, I think it might not have felt to a lot of

people like such a big leap if they're continuing to ask

those same kinds of questions that take seconds or

minutes for a human to answer. But as we get into the

kinds of things that CodeRabbit is doing where you have

these complex code reviews that could take hours, GPT

five is powerful there in a way that GPT four,

David Loker:​ 00:59:06​ Right? Yeah. So you do have to ask it much more

complicated things if you're going to see that lift. I do

think that outside of the code review, massive gain that

we saw, I do think that LLMs are going to reach their

height. I do think that architecturally we're going to have

to come up with different ideas, not even just from a

reasoning long-term perspective. How far can this go? I do

think we're going to hit that. We don't have infinite data,

the efficiency, there's lots of different things we could do

to make it better. One is just our brains are super

efficient. Just think about the stuff that we do with the

minimum amount of energy and then the amount of

Show Notes: http://www.superdatascience.com/927​ ​ 31

http://www.superdatascience.com/927

energy required to run LLMs. There's a reason there's

something missing there, right?

Jon Krohn:​ 00:59:51​ Training dataset sizes, an infant child learns or makes an

inference with even just a whiff of an example, just an

illusion to what could be happening here in terms of the

real world, world physics or human intentions. Whereas

the LLM is requiring millions of examples to get to the

same conclusion. So vast differences in energy and data

requirements for sure.

David Loker:​ 01:00:13​ Yes, exactly. And so I think there is a different framework

that we need to discover. And so some of that is going to

require tremendous amounts of very smart people to

think away from LLMs to spend their cycles thinking

outside the box. And so do I feel like the money is

wasted? No. We still have a long ways to go. We still have

lots of things that we can do from a vertical perspective.

We still have an exhausted fine tuning models on specific

verticals, coding being one of them, code review being

another. There's lots of verticals that we can still use the

current architecture and really take it still a lot farther.

And we have to have people thinking at these new things.

We are going to reach a limit in terms of what LLMs can

do. And there's no reason to stop at LLMs.

​ 01:01:06​ There's no reason. I'm sure I'm a hundred percent

positively sure that there's a lot of very intelligent people

thinking about new architectures. Why is the brain more

efficient? How do I architect this in different way? How do

I make better use of the energy being easier to make sure

that I'm doing the right thing? All these problems need to

be solved and people are working on them. And we'll see

when that next thing happens, right? And it will be

sudden and we'll suddenly be like, oh, I guess we're in a

new realm again. And it's going to again be very exciting.

And I think I look forward to it.

Show Notes: http://www.superdatascience.com/927​ ​ 32

http://www.superdatascience.com/927

Jon Krohn:​ 01:01:39​ Yeah, no question. Big, big, big things ahead. Even if we

run into temporary plateaus or if it feels like that looking

over many years, decades, crazy, crazy things are going to

happen in terms of machine intelligence, no question. I

want to get into one last kind of long question or topic

area before we start wrapping up. And so before

CodeRabbit, your career in software and machine

learning span several decades. You've had roles doing

supply chain optimization at Amazon. You used to

automate testing at Rim research in motion maker of the

Blackberry and now called Blackberry. So the Blackberry

phone. And actually something interesting I mentioned to

you before we started recording that, I went to high

school in Waterloo where you did your undergrad and

master's at the University of Waterloo. And in high school

I had a summer job doing testing of Blackberries at Rim,

which was a really, really tedious job.

​ 01:02:42​ I think the whole summer that I spent doing that, I didn't

find a single real bug. I just found a lot of issues in the

evaluation spreadsheets for a particular application for a

particular type of Blackberry phone. Anyway, so yeah,

you've done Amazon Rim, you did personalization and

recommendation systems at Netflix, and you co-founded a

unique AI based musical assistant called Wave AI where

you helped elevate human creativity with generative AI

tools. You have degrees in math and computer science

specializing in combinatorics and optimization, and you're

also a singer, a tuba player, and a guitarist. We've got

guitars in the background, many of them. And so as a

musician with a math competent Torx background and

all your AI experience, what have you learned about the

boundaries, about what's uniquely human creativity? Do

you think there are any, or do you think that machines

will be able to, in our lifetimes, kind of take on any

creative pursuit that we limit to only humans today?

Show Notes: http://www.superdatascience.com/927​ ​ 33

http://www.superdatascience.com/927

David Loker:​ 01:03:57​ These are super interesting questions. So this is an area

of passion of mine in particular, and as well as my wife.

So Wave AI was co-founded between myself, my wife, and

one of her old students, Chris, and this idea, can

machines be creative? What is creativity? That's the first

question we have to ask ourselves. What does it mean to

be creative? Because it has had definitions that make it

inherently something that only human beings can

partake in. But we have to sit there and think, is there a

definition that's somehow agnostic to humans? Because

some animals can be creative. There are birds that are

creative, there's lots of different, and I would argue nature

is in and of itself a pretty creative entity or a concept. And

so what does it mean to be creative? And so one of the

definitions that comes up in literature is this idea of

novelty and value.

​ 01:04:56​ Is it new and does someone find value in it? And so that

definition is interesting because it doesn't preclude

machines from being creative. It doesn't preclude

anything from being creative, and it still satisfies. I think

most people's reasonable definitions of one human being

is creative. They something that's new and it has value to

somebody because anybody can create something. But if

it has no value, do we consider that art? Do we consider

that creativity? It's hard to say if there's no value. And so

I think that machines can be creative for that definition of

creativity. The main thing is the question that I like to ask

on top of this is should we allow machines to be creative?

Should we allow them to create art and not have humans

involved in the process? And from my perspective, the

answer is probably no. I don't really want to consume

purely AI generated art.

​ 01:06:02​ That's not of interest to me. I want to have it come from a

person because I can identify with that person.

Ultimately. Can I feel something from AI generated art?

Sure, yeah. Potentially. It's just not what I would choose

Show Notes: http://www.superdatascience.com/927​ ​ 34

http://www.superdatascience.com/927

to consume. So our company, one of the main focuses,

and I think the most time we spent was what is the user

experience? What do I want to do here? What is my goal?

And our goal was to make human beings more creative or

to enable humans to be creative who previously thought

they couldn't be. And at the end of the process, we

wanted people to walk away from that machine and be

able to continue to create in a better way that they could

previously. And that was our goal. And so that was

antithetical to a lot of VCs. They wanted machines to

replace.

​ 01:06:56​ They wanted the idea of the ai, Spotify where humans

aren't involved, there's no royalties, and you just generate

music indefinitely. That's not for me. And so we spent a

lot of time, what does that interface look like? How does a

machine interact with the human so that when you're

done the artifact that comes out of it, you feel it's yours?

And to a large degree, it is. And that was a difficult

problem to solve, and I think we did a pretty good job at

it. Ultimately, there's a long way to go. And I think some

of these systems that you'll see now, like Suno uio,

whether it's AI image generations, they're moving in the

direction of how do I give the human being more control?

How do I make it so that at the end they're not like, this

is cool, but I'm not going to use it again.

​ 01:07:42​ It's not really mine. And they walk away. We want to, as a

human being, we want to be involved in the creative

process. I think it's innately us somehow. We want to

create music, we want to make art, we want to make

dance, we want to do movies. This is innately, we spent so

much money on this. It's a human trait. And so I think if

we want to have AI be involved in creativity, I think it

needs to enable, I think it needs to enhance. I think it

needs to broaden the ability of human beings to be

creative, but ultimately the human needs to be the

creator and the machine needs to be in the backseat. And

Show Notes: http://www.superdatascience.com/927​ ​ 35

http://www.superdatascience.com/927

that's something that I think not a lot of companies do

right now. And I think that's what we try to do. And I

think that's where it should go if we're going to allow AI to

be involved in the creative pursuits.

Jon Krohn:​ 01:08:34​ Big, big, big shifts coming. We've talked about a lot of

them in today's episode for software developers, AI

engineers, musicians, lots of big changes, opportunities

coming, and I'm excited about it. It sounds like you're

excited about it. I do. So basically, we're done with the

interview now, but now I have two questions that I always

end every interview with, and I forgot to prepare you for

this. So most of the time I tell you before we start

recording, but I forgot. So do you have a book

recommendation for us by chance? David,

David Loker:​ 01:09:07​ If you're interested in AI creativity, my wife has a book

coming out that I would definitely recommend to Creative

Machines. It's coming out in October. It tries to distill in a

very approachable way where we are in this moment as it

pertains to machines and creativity. And I think it does a

good job encompassing the history of the field. Actually

since the 1950s, this field has existed and it does a good

job telling and understanding the moment that we're in.

So I would definitely recommend it. I read it. I thought it

was really well done. Not to push my wife's book, but just

from the last part of our conversation, I would say that I

think there's a lot of great material. I would more, if I'm

going to get into this area, and I'm going to learn a lot

about agentic systems and I'm going to learn a lot about

AI coding, I don't know if I would go to a book per se.

​ 01:10:05​ I look at podcasts, I look at YouTube channels, I look at

Coursera, deep, deep learning, ais, all those types of

things. Those are the content that I consume in order to

get my hands dirty. At the end of the day, I like to learn

by doing these things as opposed to just reading them.

And I think if you want to get into this moment and you

Show Notes: http://www.superdatascience.com/927​ ​ 36

http://www.superdatascience.com/927

want to really understand what's going on, that's the

route that I would take. Just build something. You can

use these systems pretty easily. Try them out. Because a

lot of times people are criticizing these systems and

saying all this stuff about the moment, but you have to

first try it. You have to understand where these

limitations lie. Not as scary once you actually get in there

and you start to fool around with it.

Jon Krohn:​ 01:10:46​ Yeah, yeah, yeah, I like that. The two book

recommendations there, one Creative Machines. It does

sound great. What's your wife's name so that we can find

that easily and have it in the show notes?

David Loker:​ 01:10:57​ Yeah. Dr. Maya Ackerman. There we go. She's a professor

of Santa Clara University.

Jon Krohn:​ 01:11:02​ Alright, that sounds legit. It doesn't just sound like just a

nepotistic recommendation. That sounds like a legit one.

And then in addition, your second book recommendation

is Build something. Yes. Just get out there, something,

David Loker:​ 01:11:18​ Don't read about it, don't read about it. Go out there and

build something. Yes,

Jon Krohn:​ 01:11:21​ I agree a hundred percent. That's the way to do it,

especially when there are so many tools out there that

make it easy for us to be building. So get on it, see what's

possible, find out where the boundaries are in what

humans can do with machines. And David, I have loved

this conversation. This has been such a great podcast

episode. For listeners who want to get more of your

thoughts after the episode, how can they follow you?

David Loker:​ 01:11:46​ Well, I don't really partake in social media, so following

me, if you want to, you can follow me on LinkedIn. I do

post on there. I do also post on our blog, but ultimately,

yeah, if you want to and you're curious, you can reach

Show Notes: http://www.superdatascience.com/927​ ​ 37

http://www.superdatascience.com/927

out to me on there and I will do my best to respond to the

people and ask and hopefully engage in some interesting

conversations.

Jon Krohn:​ 01:12:05​ Something that I sometimes recommend is if it's a

question, basically, I guarantee that if somebody asks me

a question as a public post, I'll answer it every time

because that way lots of people can benefit.

David Loker:​ 01:12:18​ That's a good point. Yes, that's right. If you have a really

interesting question, definitely some people are scared to

ask questions publicly and they don't want to be shamed

for bad questions. I would say there are no bad questions,

but either way, human beings are human beings, right?

Jon Krohn:​ 01:12:32​ Yeah, yeah, yeah, exactly. Alright, so David, that's it.

Thank you so much for taking all this time and giving us

such wonderful insights. Looking forward to seeing how

your journey and CodeRabbit journeys, how your journey

and CodeRabbit's journey, how the both of those journeys

unfold over the exciting years to come.

David Loker:​ 01:12:50​ Awesome. Thanks very much. I really enjoyed it.

Jon Krohn:​ 01:12:56​ I seriously love that episode with David Loker today. In it,

he covered how CodeRabbit combines pipeline AI and a

Gentech AI to provide expert level code reviews, how

context engineering feeds LLM issues, dependencies, and

code graphs alongside diffs to catch bugs that span

multiple files and understand developer intent. How

developer productivity metrics must now shift from things

like lines of code to feature delivery and problem solving

is AI handles more and more routine coding tasks. How

GPT-5 doubled its performance on CodeRabbit's hardest

test cases, jumping from 10 to about 20, correct out of

25, showing breakthrough reasoning and multi-layered

logical chains. And he talked about the importance of

keeping humans central to AI creativity tools so people

Show Notes: http://www.superdatascience.com/927​ ​ 38

http://www.superdatascience.com/927

feel ownership over their creations and become more

capable creators. As always, you can get all the show

notes including the transcript for this episode, the video

recording, any materials mentioned on the show, the

URLs for David's social media profiles, as well as my own,

at superdatascience.com/927.

​ 01:14:00​ Thanks to everyone on the SuperDataScience podcast

team, our podcast manager, Sonja Brajovic, media editor,

Mario Pombo, partnerships manager, Natalie Ziajski,

researcher Serg Masís, writer Dr. Zara Karschay, and our

founder Kirill Eremenko. Thanks to that awesome team

for producing another excellent episode for us today and

for enabling that super team to create this free podcast

for you. We are so grateful to our sponsors. They make

the show happen. You can support the show if you are

interested in doing that by checking out our sponsor's

links in the show notes, or you can find out how to

sponsor an episode yourself by going to

jonkrohn.com/podcast. Otherwise, you can help us out

by sharing this episode with people who would like to

listen to it or watch it. You can review this podcast on

your favorite podcasting platform or YouTube subscribe.

Obviously if you're not a subscriber already. But most

importantly, just keep on listening. I'm so grateful to have

you listening and I hope I can continue to make episodes

you love for years and years to come. Till next time, keep

on rocking it out there and I'm looking forward to

enjoying another round of the SuperDataScience Podcast

with you very soon.

Show Notes: http://www.superdatascience.com/927​ ​ 39

http://www.superdatascience.com/927

