

SDS PODCAST

EPISODE 918:

MULTI-AGENT

SYSTEMS WITH

CREWAI

Show Notes: http://www.superdatascience.com/918​ ​ 1

http://www.superdatascience.com/918

Jon Krohn:​ 00:00​ This is episode number 918 on Multi-Agent Systems with

CrewAI. Welcome back to the SuperDataScience Podcast.

I am your host, Jon Krohn. Today's episode is a crisp

overview of multi-agent systems and specifically CrewAI

an extremely popular framework for creating and

managing multi-agent teams. I'll cover what CrewAI is,

how it works, a few concrete use cases, a quick

comparison to earlier agent frameworks and why it

matters for your workflow. All right, let's jump in. So first

off, CrewAI is an open source python framework for

composing teams of agents, teams of AI agents that

collaborate like a small, well, like a crew or a team or a

small company. Instead of asking one general model to do

everything, you stand up specialized agents such as one

that's a researcher, another that's a planner, another

that's a writer, another that's an engineer.

​ 00:55​ And each agent on that crew has a clear goal and specific

tools that they need for their particular specialization. The

crew then coordinates to produce an outcome that's

larger than the sum of its parts. In practical terms,

CrewAI gives you structure around multi-step multi-agent

work so that complex projects become repeatable,

auditable and faster. So how does it all work with the

CrewAI framework? We think in terms of roles, tasks and

handoffs, the roles you assign to each of the agents in

your crew, the tasks that get assigned to crew members

and the handoffs wherein information flows between

different agents on the crew, you define each agent to

have a particular role. You break a project into tasks and

you let the framework automatically route work between

agents with shared memory and critically to make sure

these things all work safely with guardrails as well.

​ 01:49​ So you might have one agent that gathers facts, another

that synthesizes information, another that critiques, and

a final agent that assembles the deliverable all in some

consecutive workflow that you've defined or potentially

Show Notes: http://www.superdatascience.com/918​ ​ 2

http://www.superdatascience.com/918

non-sequential. And there's different degrees of autonomy

you can define. So you can run the crew with substantial

autonomy that's great for things like open-ended research

and creativity, or you can constrain the crew to have a

more deterministic workflow when you need reliability

auditability or some kind of tight software agreement that

you have with say, a client of yours. The key is that you

have explicit roles and deliberate handoffs, so each agent

knows when to stop, what to produce, and who to pass it

to. Hopefully the power and flexibility of multi-agent

systems is starting to sink in. But here are three different

use cases to make it concrete. First software

development, something that many of us are familiar

with, you could have a crew that can review pull requests

automatically.

​ 02:52​ So you could have a static analysis agent that flags

security and style issues. A testing agent that proposes

unit tests, a reviewer agent that explains risks and

suggests differences. And humans would still need to

approve and merge the pull request, but the crew handles

the heavy lifting, accelerating code quality while reducing

toil. As a second example, think about content creation

like creating a podcast episode. You could have a

research agent that compiles citations, a writer agent that

drafts with structure and voice and an editor agent that

revises for clarity, accuracy, and tone. Because each role

is persistent, you get consistent behavior across runs.

Your writer keeps the same brand voice, your editor

enforces the same style guide, so outputs improve over

time. The result is publication ready copy with fewer

cycles. Again. However, just like with the software

example, you are probably going to want humans in the

loop for the foreseeable future on these outputs to ensure

that it really is publication ready copy.

​ 03:59​ And I've got some more gotchas for this end of the episode

for things that you need to be looking out for in this

Show Notes: http://www.superdatascience.com/918​ ​ 3

http://www.superdatascience.com/918

multi-agent system world. But before we get there, here's

a third and final example for you. So first we had software

development. Second, we had content creation. A third

example is here in industrial operations. So imagine a

supply chain or a customer support scenario. You could

have a watchtower agent that monitors signals inventory,

whether social chatter, a planner agent that recalculates

options, and a negotiator or comms agent that reaches

out to vendors or customers with proposed adjustments.

When an exception hits, the crew reacts in minutes

instead of hours, and every decision is logged for audit

and learning something that can be trickier with people.

So how does CrewAI compare to earlier agent

approaches? Traditional single agent plus tools setups

are powerful for bounded, well constrained tasks, but

they tend to blur roles and require constant prompt

juggling to maintain context.

​ 05:00​ Early multi-agent experiments proved the idea, yet often

lacked stability. So they proved the idea of having

something like crew but didn't have the stability. So

CrewAI leans into both specialization and coordination.

You get durable roles, explicit task decomposition and

structured handoffs. You get the creativity of autonomous

agents with the governance of a defined process. In

practice, that means fewer loops to get things right, less

brittle prompting and easier scaling from one-off

experiments to production workflows for data scientists,

AI engineers, software developers, or any other

practitioners looking to build multi-agent systems. True

AI provides a straightforward architecture for going

forward. You define agents in code, so things like name,

role, goals, allowed tools, and any safety constraints. You

define tasks including acceptance criteria and expected

artifacts. Then you choose how work flows. You could

have a freeform crew for exploration, a stricter flow for

determinism or a hybrid that uses a flow to call a crew at

key steps.

Show Notes: http://www.superdatascience.com/918​ ​ 4

http://www.superdatascience.com/918

​ 06:07​ Logging and intermediate artifacts make runs

inspectable, which is essential for debugging and for

regulated environments. And the good news, more good

news is that swapping models or tools is a simple

configuration change, not a rewrite. So you can evolve the

system quickly as requirements change. Now, the bigger

picture, multi-agent workflows shift AI from a clever

assistant to an actual team member or like a team of

team members that can unlock step function gains in

productivity. Projects that used to require multiple expert

humans in the loop at each phase of the project can now

be initiated with a single well scoped brief. It also elevates

human work when crews of agents handle the rote grind,

collecting, summarizing, formatting. We humans get to

spend more time on judgment, taste, and strategy with

great new power. Of course also comes new

responsibilities. This is what I was talking about earlier,

the things to look out for.

​ 07:03​ So some of the key ones when running a multi-agent

system include defining review gates, tracking sources,

restricting tool permissions, monitoring spend, and

keeping a human in the loop for consequential decisions.

To wrap with those caveats and concerns aside, things to

look out for CrewAI's core idea is simple and potent.

Specialized agents coordinate them well and let them

work together to toward a shared objective. If you've

dabbled with single agent prompts and hit limits on their

capabilities, accrue may be the next logical step for you.

Start small codify roles. You already play decompose one

weekly task into two or three agent handoffs and then

iterate from there. The payoff is compounding. You get

cleaner processes, faster cycles and results that feel like a

competent team delivered them. And as I've mentioned

many times on this podcast before, if you're not sure

where to start with multi-agent systems in your

organization or maybe even in your personal life, your

favorite conversational agent, be it Chat, GBT, Claude or

Show Notes: http://www.superdatascience.com/918​ ​ 5

http://www.superdatascience.com/918

Gemini is only a browser tap away and can help you

ideate on where to get started.

​ 08:08​ This may all have sounded like a long ad for CrewAI , but

they have in no way sponsored me or this show. I'm

simply a big fan. Indeed. If you want to learn more about

CrewAI and engineering teams of AI agents, you can

check out the four hour workshop that I published on

YouTube. It's all available for free. And I did it with my

brilliant longtime friend, ed Donner. We've got a link to

that in the show notes for you. And of course we have the

GitHub, URL for the open source CrewAI repo in the show

notes for you as well. Alright, that's it for today's episode.

I'm Jon Krohn and you've been listening to this

SuperDataScience podcast. If you enjoyed today's episode

or know someone who might consider sharing this

episode with them, leave a review of the show on your

favorite podcasting platform. Tag me in a LinkedIn post

with your thoughts, and if you aren't already, be sure to

subscribe to the show. Most importantly, however, we

hope you'll just keep on listening. Until next time, keep

on rocking it out there, and I'm looking forward to

enjoying another round of the SuperDataScience podcast

with you very soon.

Show Notes: http://www.superdatascience.com/918​ ​ 6

http://www.superdatascience.com/918

