

SDS PODCAST

EPISODE 911:

THE FUTURE OF

PYTHON NOTEBOOKS

IS HERE, WITH

MARIMO’S DR.

AKSHAY AGRAWAL

Show Notes: http://www.superdatascience.com/911 1

http://www.superdatascience.com/911

Jon Krohn: 00:00 Welcome to episode number 911. I'm your host, Jon

Krohn. Starting with today's episode, we're trying out

much shorter intros, so I'll quickly tell you that you're in

for a treat with today's guest, Dr. Akshay Agrawal.

Akshay has built a clever open source replacement for

Jupyter Notebooks, based on the pain points he

experienced with Notebooks while completing his PhD at

Stanford. Akshay is smart, well-spoken, humble. I think

you'll really enjoy this one.

 00:25 This episode of SuperDataScience is made possible by

Dell, NVIDIA and AWS.

 00:32 Akshay, welcome to the SuperDataScience podcast.

Where are you calling in from today?

Akshay Agrawal: 00:36 I'm in the Bay Area in Redwood City. Thanks for having

me, Jon.

Jon Krohn: 00:39 Classic tech founder, AI tech founder, in the Bay Area.

What are the odds? And you actually, you were

introduced to me by Shaun Johnson, who is an investor

at AIX Ventures in San Francisco, and if people are

interested in hearing an episode involving what investors

are looking for in AI startups and where the opportunities

are for AI startups, or anybody building AI solutions for

enterprises, that's episode 895. It's a great episode.

Shaun is amazing. I guess you spend time with him in

person in San Francisco sometimes?

Akshay Agrawal: 01:16 Yeah, I do at the AIX office. I do spend time with him, and

he is amazing. He definitely is. I've known him for how

long now? A bit over a year, and I'll see him usually

almost every week.

Jon Krohn: 01:29 Oh wow, really? From what I could see in the

background, and people can see it in the video version of

895, it's a beautiful looking office.

Show Notes: http://www.superdatascience.com/911 2

http://www.superdatascience.com/911

Akshay Agrawal: 01:38 Yeah, the AIX office is very, very nice, up in San

Francisco.

Jon Krohn: 01:42 Nice. And so the reason why you're there once a week is

because AIX has invested in your startup, which you are

co-founder and CEO of, and it's Marimo. And so I want to

start off with that name, because our researcher Serg

Masis dug up that marimo means bouncy play ball that

grows on water. And so it's a species of ball-shaped green

algae native to Japan. Does that relate in any way to your

company name?

Akshay Agrawal: 02:13 Yes, sort of. I can give you two stories, okay? The outer

story and the actual inner story. So the outer story is that

Marimo is a next-generation computational notebook for

Python, data and AI. And well, what are the previous

generation ones, or what are related ones? So the one

that most people know about is the Jupyter Notebook.

Now the Jupyter, it's a very large sphere, a very large

sphere. There's another notebook for a different

programming language called Pluto.jl, but it was a

smaller sphere. It's kind of cuter, some would say. And

Marimo is the next-generation one for Python, even

smaller sphere. Very adorable, very beloved, especially in

Japanese culture, but also plant enthusiasts.

 03:07 And Marimo moss balls, one thing that's actually cool

about them is that they're actually assembled from these

tiny strands of moss that all get clumped together and

they live at the bottom of lake beds, and they intermix

and mingle, and together they're greater than the sum of

their parts. And Marimo Notebooks, in ways that we

might discuss, are similar. They're collections of cells that

when taken together are greater than the sum of the

parts. So that's the story, conceptually, of what the name

is.

Jon Krohn: 03:41 Nice.

Show Notes: http://www.superdatascience.com/911 3

http://www.superdatascience.com/911

Akshay Agrawal: 03:41 Also-

Jon Krohn: 03:42 There's a lot to that. Yeah, nice. Give me the also.

Akshay Agrawal: 03:45 There's also an also, which is during the pandemic, my

partner and I, we had a Marimo moss ball in our

apartment, and we just really loved it and we were like,

okay, this is the thing. We love this thing. Let's just call...

Yeah. It just makes sense. It also abbreviates well. Import

Marimo as MO, which is you need that two character

abbreviation for Python libraries.

Jon Krohn: 04:09 I love that. That's a great story. And they are super cute. I

wasn't aware of them before, but I looked at some. And so

I'm going to make a special request to our video editor,

Mario, to overlay some cute photos from the internet of

marimo balls, so that at least the people watching on

YouTube can see some of those as you were describing it.

And people who are in the audio only format, you're just

going to have to look it up. If you're driving, don't do it

while you're driving. But when you get to a stoplight,

check them out. They're super cute.

 04:45 Nice. So your work at Marimo was inspired in part by

reproducibility pain. So anybody who has used Jupyter

Notebooks has experienced difficulties with

reproducibility, and I have lots to go into around that

later in the episode. But just as a starting point, that kind

of reproducibility pain that you experienced as a PhD

student at Stanford, especially with things like coauthors

handing you broken notebooks, and model training often

beginning without checkpoints, version control or

recorded data providence; tell us about those pain points

that you experienced as a PhD student and how you came

up with your solution.

Akshay Agrawal: 05:27 Yeah, definitely. So for a bit of background, so I did my

PhD in machine learning. It was 2018 to 2021, so I did it

Show Notes: http://www.superdatascience.com/911 4

http://www.superdatascience.com/911

at Stanford and I specialized in vector embeddings, high

dimensionality vector dimensionality reduction. So

finding structure in these high dimensional spaces. And

so when you work on things like that, it's really important

to be able to see your data while you work on it. So

notebooks, and Jupyter Notebooks were super, super

useful. Without that iterative experience, that kind of

research would be way harder. So very grateful for having

Jupyter Notebooks. But as I did that research, there were

a few shortcomings, some of them having to do with

reproducibility that came to the forefront as I worked with

Jupyter Notebooks on an almost daily basis. And so when

it comes to reproducibility and maintainability, there's a

few different aspects.

 06:32 So for one, the file format for Jupyter Notebooks, they are

stored as these JSON blobs. And so you can't really reuse

code across them easily without jumping through some

hoops. So you end up just duplicating your notebooks for

slightly different experiments. Whereas if you were writing

software, you would just import functions from one

module to another. But also this JSON blob made version

control pretty hard, because you'll run a notebook and

you might not even change any code, but maybe the

image changes, or some metadata changes and you get a

big git diff. So it's hard to know how your experiment

code actually changed over time.

 07:22 Another issue that would come up, and so for some uses

of Jupyter... This is a feature that I'm about to describe,

for some uses it is a feature. For the kinds of stuff where

you're doing science or you're doing data engineering and

you need things to be deterministic, it is not a feature, in

my opinion at least. So in a Jupyter Notebook, you can

run cells out of order. You can run cell number one, then

cell number three, then cell number two, then cell

number one again, and then maybe you forgot to run cell

number three. Cell number three maybe depended on cell

Show Notes: http://www.superdatascience.com/911 5

http://www.superdatascience.com/911

number one, and you just totally forgot you never ran it.

And the point is, now your program memory is in some

strange sort of quantum state that you don't understand.

And then you'll figure out four hours later, eight hours

later, like, oh crap, none of my experiment results are

valid.

 08:17 And so that problem is broadly referred to as hidden

state. And it just comes down to the fact that in a Jupyter

Notebook, the notebook runtime doesn't know how your

cells are related to each other. And so that was a big pain

point. If you contrast that to an Excel, for example, if you

update a value in a cell, everything recalculates and the

world makes sense. And that doesn't happen by default in

a Jupyter Notebook. And I'm talking a lot, but the last

thing, and we can go into any of these, is package

requirements. So when you're working with a notebook,

you might forget to track what packages. If you use

PyTorch, like this specific version of PyTorch, and this

specific version of Transformers, you might just forget to

put that down in a requirements.txt or a PyProject.toml,

like researchers often did. But then that means when you

pass your notebook to someone else, they can't get the

same results that are serialized in it. And so then that's

just another angle in which the reproducibility problem

becomes front and center.

Jon Krohn: 09:28 So yeah, we're going to get into more detail on

reproducibility, all of the issues over the course of this

episode, all the pain points that probably many of our

listeners have experienced, and the solutions that you

have for them. So I've got some of the key adjectives here

around Marimo from our research. So it's open source,

it's reproducible, it's git-friendly, it's AI native, and it's a

reactive notebook. So a few things to dig into here. The

open source thing, for example, you guys are doing very

well. 4 million downloads I understand already at the

time of recording, which is very cool. It must be amazing

Show Notes: http://www.superdatascience.com/911 6

http://www.superdatascience.com/911

to see people just voluntarily being like, "This is a

solution for me. I need this tool," something that you've

spent all this time writing and developing and leading the

product on. So that must be cool. But what I want to talk

about is the word "reactive" here. And so the idea is that

it's a better tool, Marimo is a better tool, because it

nudges users towards better data science practice by

being reactive in this way. Tell us more about that.

Akshay Agrawal: 10:30 Definitely. Nudges is a good word. One of our users

described it as gentle parenting. So yeah, what reactive

means, it's just a... What it means is that Marimo keeps

the code on the page in sync with the outputs you see. So

basically, say you have three cells, the first one says A =

1. The second says B = A + 1. And the third one is C = A +

B. And then you output those, you output the variable in

each. So you see in the first cell A = 1; B = A + 1 = 2; and

then C = A + B. 1 + 2 = 3.

 11:16 Now what reactive means is if you go back to the first cell

and change the value of A from 1 to 2, and then you run

that cell, so you change the value of A = 1 to 2, and then

you run it, the next two cells will automatically run with

the updated value of A. And so their outputs will update

to, if I can do this in my head right, 3 and 4 or something.

So they'll recalculate like a spreadsheet, like you're used

to. And why does this matter? Why is this a good thing?

Two things. So one is actually it just leads to way faster

data exploration. Like instead having to manually change

the value of a variable and then hunt for all the other

cells that use that variable, Marimo will just

automatically run them and you can just see really

quickly in real time, what did the new outputs look like?

So that's one.

 12:09 But the other one, which is maybe more subtle, is the

reproducibility aspect, which is... Because if you forget to

run a cell that depends on a variable you just changed,

Show Notes: http://www.superdatascience.com/911 7

http://www.superdatascience.com/911

now you can't trust any of the outputs in your notebook

and your experiment is borked. So that's what reactivity

gives you. And one thing, I'll just pause, because if there's

machine learning practitioners or AI folks in here, the

next question that always comes up, which I'll anticipate

is, "Oh, but some of my cells are going to start kicking off

like a GPU training job, and I don't want that to start

automatically. It's expensive, I can't interrupt it."

 12:50 And so for those situations, Marimo does have a button

that says, "make execution", we call it lazy. And so if you

do that, and if you run a cell, Marimo will just mark the

other ones that depend on that cell as stale, but it won't

auto run them and it'll give you a button to run them. So

you still get guarantees on the reproducibility in the state,

but you can rest easy that you're not accidentally

spending your OpenAI credits or whatever you're doing

that's expensive.

Jon Krohn: 13:18 Nice. And so I guess that ties into how you've previously

mentioned that Marimo's reactivity makes UI elements

like sliders and plots substantially more useful than

Jupyter Widgets. And I guess it's because of what you

just described, where in the Jupyter Notebook you don't

know necessarily... Any UI elements, any plots that you're

outputting, any sliders you might have in the notebook,

you don't know in the Jupyter Notebook whether those

are being updated properly based on other changes that

you've made. Is that where that reactivity becomes useful

there or is it something else?

Akshay Agrawal: 13:54 Yeah, no, that's essentially it. So in a traditional style

notebook, if you had a slider, first of all, getting that

hooked up to even propagate its value back to Python is

challenging, you have to have callbacks and stuff. And

even if you do, the things aren't going to automatically

run with the updated value of your slider. So it's like,

okay, what was the point? Whereas in Marimo, you

Show Notes: http://www.superdatascience.com/911 8

http://www.superdatascience.com/911

import Mario as MO into your Marimo notebook, and now

you have access to a bunch of UI elements such as

sliders. So you could replace the variable AI set. Instead

of it just being an integer, it can be a slider. And now as

you scrub the slider with your mouse, the other cells are

automatically running as well. And so that's like the

interactivity feeds into reactivity to give you a truly

dynamic experience that can really, really speed up your

data exploration.

 14:48 One concrete example from the PhD that really helped

what I really wanted to achieve, and I think we achieved

pretty early, was you can even output plots in Marimo

where you can select a cluster of a scatterplot with your

mouse, and then those points get sent automatically back

to Python as a data frame and then for downstream

analysis. So it really opens up new kinds of interactive

experiences.

Jon Krohn: 15:14 This episode of Super Data Science is brought to you by

the Dell AI Factory with NVIDIA, two trusted technology

leaders united to deliver a comprehensive and secure AI

solution. Dell Technologies and NVIDIA can help you

leverage AI to drive innovation and achieve your business

goals. The Dell AI Factory with NVIDIA is the industry's

first and only end-to-end enterprise AI solution, designed

to speed AI adoption by delivering integrated Dell and

NVIDIA capabilities to accelerate your AI-powered use

cases, integrate your data and workflows, and enable you

to design your own AI journey for repeatable, scalable

outcomes. Learn more at

www.dell.com/SuperDataScience. That's

dell.com/SuperDataScience.

 16:01 Nice. That's really cool. I appreciate the tangible example,

something that's always useful for our listeners, for sure.

And another feature that seems really cool to me is that

when you have the notebook maybe into a state that

Show Notes: http://www.superdatascience.com/911 9

http://www.superdatascience.com/911

you're happy with, you actually could hide the code cells

and then all of a sudden you have a data app just ready

to go. Is that right?

Akshay Agrawal: 16:26 Yeah, that's exactly right. So a Marimo notebook collapses

the space between notebooks and data apps. Now all your

notebooks can be just notebooks. They don't have to be

anything more, but if you want to, yeah, you just push a

button and then boom, you don't have just a notebook,

you have a full-fledged data app, which by the way is

actually pretty performant. Unlike Streamlit, in Marimo,

you slide a slider, it's only going to run the things that

depend on the slider. It's not going to rerun the whole

notebook. And yeah, that data app, you can serve it on a

server, you can even run it entirely in the browser with a

technology called Web Assembly. So really easy to share

these artifacts.

Jon Krohn: 17:05 Nice. I love that. And then, so it just occurred to me, this

actually wasn't in our research, but this is an open

source project, Marimo, but you have Venture Data,

Sean's invested in your company, AIX and other investors

are expecting a return, what's the commercial angle for

you?

Akshay Agrawal: 17:25 So Marimo as the open source, what we're doing is we're

providing the best programming environment for

individuals to work with their own data. And you can still

use it successfully at your own company or at a company.

We have many people using Marimo in companies, very

large as well as small, cutting edge startups. As far as

commercialization goes, whereas Marimo is the best place

for individuals to work with their own data, there's still a

lot of gaps in order to work with data in your enterprise at

scale, especially doing rapid experimentation with very

large datasets. So there's a lot of unsolved problems

there, and that's where we plan to commercialize.

Show Notes: http://www.superdatascience.com/911 10

http://www.superdatascience.com/911

Jon Krohn: 18:06 That sounds like a really great strategy, a great

commercialization strategy, so people can get the full use

of your tool as individuals. And so I think this is

something that would often be called product-led growth,

PLG, where you have users that are volunteering to try

this product out, and in a situation like yours where

you're getting millions of downloads, it's obviously

working well, it's about as well as PLG goes. But then

there's kinds of features that enterprises are looking for

around security, for example, maybe collaboration, maybe

file storage. There's all kinds of ways that it would be

impossible to offer those things for free to people. There

would be substantial costs to the creator of that kind of

functionality. And so it makes perfect sense to then be

offering those as a commercial offering.

 18:59 And it's something that we've seen, going back a couple of

decades, tools like RStudio, they followed a similar kind of

trajectory. They become the default IDE for, at that time,

using R, which was very popular for data science, data

analytics some years ago. And it still is. It still gets used

today, but Python is now the lingua franca in data

science, and it's great to see Marimo developing a great

environment, and I love how you can get so quickly from

a notebook to a working data app. That's something cool

that I haven't seen. I haven't seen it done exactly like that

before. I think that could be great.

 19:46 So onto my next question. You've talked about a vision

where you go from, as we've been talking about this whole

episode, where you go from these error-prone

JSON-based scratch pads that Jupyter Notebooks are,

into a full stack developer platform, where exploration

and deployment converge, just as in having a data app

there ready to go instantly. So when tools collapse the

boundary between notebook and application, that seems

to change not just workflows, but also how roles work. So

as this line blurs, what kinds of new responsibilities and

Show Notes: http://www.superdatascience.com/911 11

http://www.superdatascience.com/911

skills should our listeners adapt? Or does this just mean

that they don't have to develop engineering skills? So how

does it change things for our listeners who are maybe

developing data applications, developing models for

deployment? And then after you've thought about how it

changes things for an individual, how does it change

things for an organization in terms of research,

engineering, operations, something like Marimo seems to

break down a lot of silos.

Akshay Agrawal: 20:58 Yeah, that's a really good question. I think it's an astute

observation. So in terms of the individual, like the

practitioner, data scientist or even ML engineer, AI

engineer, data engineer, I think the way that I think about

it is that Marimo gives them new capabilities to make

their work just far more useful in the organization. And

that gets into your second question, too: how does that

change things within an organization? So the data app is

one good example. Previously you may have done your

experiment in a notebook and then you're like, "Okay,

where's the front end engineer who can help me actually

build an application around this to make my work

actionable?" At best, you might try to reach for something

like Streamlit, but you would hit performance bottlenecks

there rather quickly. It's like with Marimo, there's no

migration phase, like your notebook. Should you want it

to, just change a couple of variables to sliders or

dropdowns or tables or whatever you need. And then all

of a sudden you have a data app that you can then share

with your team, but also to your CEO.

 22:05 So actually in a number of companies that are using us,

CEOs are using Marimo notebooks that their data

scientists made for them. Sometimes the CEOs are

actually making their own Marimo notebooks to run their

own operations, just because the barrier entry is so low

and it's even lower once you consider LLM integrations

that we have, just like vibe code your way through a

Show Notes: http://www.superdatascience.com/911 12

http://www.superdatascience.com/911

pretty simple tool that you can make. So that is one way

that I think Marimo gives the data scientist new

capabilities and also brings new people into the fold.

There is another way, and it has to do with what you

mentioned of Marimo notebooks being stored as Python

files, because actually every Marimo notebook is an

executable script. It's just a Python file. You can go to the

command line, say Python, mynotebook.py, even pass a

command line arguments. So from your notebook, now

you actually have a workflow that you can run as a

pipeline or as a Cron. And so that's yet another way, by

reducing that friction, we've now made you hopefully a lot

more productive.

 23:13 And also, there's a lot of alsos, but because it's a Python

file, you can actually say from my notebook, import my

function or import my class. And when you do that, that

means that... There's famously, for many years now,

people have talked about the notebook to production

handoff, the researcher to engineer handoff, that makes

that handoff a lot less difficult, a lot more streamlined.

Because as nudges you to write better code, and it gives

you these reusable functions, you can actually give your

notebook to someone and they can import it and just use

the logic. You could even write tests for your Marimo

notebook. Marimo works with Pytest, so that's another

way that it makes notebooks actually more useful in the

engineering context as well.

Jon Krohn: 24:05 Nice. Probably during that part of the video version of

this, we would've had the camera all on you, Akshay, but

I was nodding my head aggressively throughout that

whole time because that kind of functionality that you

just described there is so useful. That would be an

amazing functionality in terms of being able to call my

notebooks from the command line or be able to pull in

classes into other programs that I have running, or other

scripts that I'm developing. That is super cool. And it's

Show Notes: http://www.superdatascience.com/911 13

http://www.superdatascience.com/911

pretty amazing because, well, maybe it's just because it

flows naturally from topic to topic, but our next question

that I had for you was on exactly that.

 24:49 So let's get to what I had right after that, which was

around AI assistance. So this is something that a lot of

our listeners, including myself, are huge fans of Cursor as

an IDE, and part of that is because LLMs make it very

easy to write code. All of a sudden whole functions are

just appearing before our eyes. So it's kind of like an

autocomplete on steroids if people have the experience.

For people who haven't used Cursor, it's similar to what

something like Gmail does today or even a Google search

where you get the next few words suggested, but it ends

up sometimes it's like whole function appears in front of

you in Cursor. And so it sounds like Marimo also has a

kind of AI assistant involved. Tell us about it.

Akshay Agrawal: 25:45 Yeah, definitely. So in the Marimo editor, Marimo as a

notebook works like most notebooks. You see something

in your browser Python cells where you can type code in,

you see outputs. And also there's a few different points,

four, I think, at which AI is integrated into our editor. So

the most prominent one you'll see is a button that says

Generate with AI. And so that's what it sounds like, so

you can generate Python code, or SQL code, I should

mention. So Marimo has native support for SQL, and you

can use essentially whatever AI backend you like. So you

can connect to OpenAI, Anthropic, Gemini, you can also

use Ollama to run local models. But the point is, what

makes a notebook a unique experience, and makes our

notebook a unique experience for using an LLM, is that

while you actually have data in memory, and that's really

different from traditional software engineering where it's

just text files, here you have a running notebook session,

you have data frames in memory, you have tables in

memory.

Show Notes: http://www.superdatascience.com/911 14

http://www.superdatascience.com/911

 26:52 So what you can do is you can say something like, "Hey,

using my data frame," and you tag your data frame,

"using @df, do a group by the country column and

aggregate over all numerical columns.' And then what

Marimo will do behind the scenes, it'll pull the data frame

from memory, look at the schema, get some sample

values, and pass that in as part of your prompt, so that

when you get the generated code, it actually has the

column names in it and it'll actually work. And that's

something subtle, but you won't be able to get that from

just using Cursor on the text files. And that alone is a

huge productivity boost, I think.

Jon Krohn: 27:34 Nice. I'm so glad that you were able to... I feel kind of bad,

almost, when someone like you, startup founder, comes

on the show and is talking about their product, and I'm

like, how about this other product?

Akshay Agrawal: 27:47 No, no, no, no.

Jon Krohn: 27:48 But Cursor is something that a lot of people have

experience using, and so thank you for that explanation

of how it works in Marimo, and also the kinds of things

you can do. It sounds like you've been thinking about

ways that data scientists in particular, or AI ML

engineers, in particular data analysts, people who are

used to the Jupyter environment, how they would benefit

most from an AI assistant, which adds kinds of features

like you just described there around data frames being

populated like you'd expect. So, super cool. And that

actually is a great segue to my next question, which is

around, you've previously said that there was a joy to

rethinking a system from first principles as you set about

creating Marimo. So you get to have an opinion on how

the tool should be designed. And so it sounds like, if our

research is correct, you began Marimo with a 2,500 word

design document. So yeah, tell us about that experience

Show Notes: http://www.superdatascience.com/911 15

http://www.superdatascience.com/911

of coming up with this opinionated tool from scratch,

what that was like.

Akshay Agrawal: 29:00 Oh yeah, it was a ton of fun. So this was right after I

finished my PhD, so 2022. At that point, like we talked

about, I used notebooks a ton during my PhD. There were

still some gaps. And so what I got the opportunity to do is

that I had some free space and I got to just study the

landscape, got to really dig into, well, what do people like

about notebooks? Interactivity, seeing your outputs live,

and also what are people doing in other ecosystems?

What kind of innovations, what kind of ideas are people

playing with, what are they innovating on? And so that

process took me through... I did research basically, and

that's when I discovered the Pluto notebook for the Julia

programming link, which it felt like something out of the

future to me, because it has these concepts. So Pluto

predates Marimo, and it's a big source of inspiration.

 29:58 It has reactive execution, it has UI elements, it's stored as

a Julia file. It doesn't have the web app thing, but I looked

at that and I'm like, well, wow, that's really close to a data

app and we can build that functionality in. And so that

was a huge inspiration for me. Python has its own

challenges of making something like that work. So then

the next step was writing a design doc, like, well, how do

you... It's like you're threading this needle. How do you

design a batteries included experience where you have a

notebook, it doubles as an app, and it triples as a script

or as a module. And what I didn't want was a bunch of

kluges to... It had to feel seamless and it had to feel

frictionless. And that's why there was this design

iteration. And I was lucky, though, because I wasn't

designing in a vacuum.

 30:49 So it's part of what we didn't chat about, so before we got

funding from AIX Ventures, Marimo was built with close

input from researchers at Stanford SLAC National

Show Notes: http://www.superdatascience.com/911 16

http://www.superdatascience.com/911

Laboratory, Department of Energy Laboratory, as well as

with some industry researchers at a couple of startups.

And so I would have ideas and throw them at them and

they would give feedback, and you could see some of

these early design documents, and some of the ideas were

just totally horrible. But I got to work with them to refine

them and make them a lot better. And I think that was a

really special time.

Jon Krohn: 31:27 Curious about Trainium2, the latest AI chip purpose built

by AWS for large scale training and inference? Each

Trainium2 instance packs a punch, with 20.8 petaflops of

compute power. But here's where things get really

exciting. The new Trainium2 Ultra Servers combine 64

chips to deliver a massive 83 petaflops in a single node.

These Trainium2 instances deliver 30 to 40% better price

performance relative to GPU alternatives. Major players in

AI like Anthropic and Databricks, along with innovative

startups like Poolside, have teamed up with AWS to power

their next gen AI projects on Trainium2. Want to see what

Trainium2 can do for your AI workloads? Check out the

links in the show notes. Now back to the show.

 32:15 Nice. That does sound like a great experience and

hopefully something that's inspiring for any of our

listeners out there that are thinking about building a

product. It sounds like you had a great way of getting

going on that. Thinking about the best parts, the worst

parts of the development experience for data scientists.

You've put a great product together, it's really cool.

Something that we talked about earlier, right at the onset

of the episode and that would've come up, I'm sure, as

you were developing the product in that Word document,

is this reproducibility issue. So the Jupyter Notebook has

been a very standard tool for a decade now for data

scientists, but you've cited a study previously showing

that only 4% of Jupyter Notebooks reproduce their

original results due to issues that you call the hidden

Show Notes: http://www.superdatascience.com/911 17

http://www.superdatascience.com/911

state trap, among other kinds of problems. Do you want

to dig into these kinds of problems with reproducibility

that Jupyter Notebooks have and how Marimo resolves

them?

Akshay Agrawal: 33:18 Definitely. So just to caveat this discussion, I think every

notebook does have its place. And with Jupyter

Notebooks, I think they are well suited to REPL workflows

where maybe you're not shooting for reproducibility, but

you're quickly really hacking things. The issue is, though,

then, I think because it's such a great environment for

interactive coding, people started using them and really

relying on them for use cases where reproducibility is

paramount, like data engineering, like science and like

machine learning. And so the question was dig into some

of those reproducibility issues and how Marimo solves

them. So two main classes. So one is the issue of hidden

state where in a Jupyter Notebook you run a cell,

Jupyter's not going to run the cells that depend on it, like

the cells that use its variables. And it's up to you to

remember all the complicated dependencies that might

flow through your notebook, and you're going to forget

some. I often did. And so now your notebook is in some

weird inconsistent state. So that's one issue.

 34:24 To make that really pronounced, so in a traditional

notebook like Jupyter, say you have a cell that, it's got a

bunch of code in it, and maybe one thing that that cell

does is create some PyTorch model class, instantiate

some class. And then say you delete that cell, and then

you continue coding elsewhere in the notebook. You

deleted that cell, but say you didn't realize that that was

the cell that defined the model class, and you really

wanted that model class around. But in Jupyter, if you

delete that cell, that model is still in memory for the time

being. And so your rest of your notebook will work as you

want it to work. But you come back the next day and you

run the notebook from scratch, nothing works, and you're

Show Notes: http://www.superdatascience.com/911 18

http://www.superdatascience.com/911

like, what happened? And it's like, oh crap, I deleted the

cell that defined the model and I really needed that.

 35:14 So in Marimo, if you do that, if you delete the cell that

defines your model variable, it'll tell you. It'll remove the

model from memory and it'll invalidate the other cells. It'll

be like, "Yo, that variable is no longer around. You can't

do this anymore." And so it'll catch bugs immediately

when you introduce them. So that's one big way. And the

second big way is package management. And so Marimo

has a special opt-in package manager, which I think is

really neat. So basically if you start Marimo in a mode

that we call sandbox, from the command line or however,

every time you install a package (Marimo has a very nice,

slick package installation UI), we'll save the package that

you installed and the version as a comment or an entry in

the notebook file itself.

 36:06 And now when you come back to the notebook a second

time and you do run it, Marimo will create an isolated

virtual environment for you that has just those packages.

So that means that you can just send a single notebook

file around and people can just run it without even

thinking about what packages they need to install, which

makes them more reproducible, but also just a lot more

portable. It's really easy to just create these single

standalone tools and share them.

Jon Krohn: 36:32 I had more aggressive head nodding there while you were

describing all that. I'm going to have to start using

Marimo myself. Very, very cool. So something else that I

think is really cool about functionality that we've learned

that I want to... It's something that's so visual and so

easy to understand. It's something that would feel to me

like magic, as somebody who has really only used Jupyter

Notebooks before for this kind of script development. So it

sounds like it's possible, correct me if I'm wrong, that

because of the way that you've thought about data

Show Notes: http://www.superdatascience.com/911 19

http://www.superdatascience.com/911

analysts, data scientist, data people's experience from the

ground up with developing this tool, it allows you to do

things like highlight, select the data with your mouse in a

scatter plot, and then get it back as a data frame. Is that

right?

Akshay Agrawal: 37:25 Yeah, that's right. Yeah, that's an example.

Jon Krohn: 37:27 That's crazy.

Akshay Agrawal: 37:29 Yeah, it feels really nice. And I really needed this during

my PhD and I didn't have it. So it really enables really,

really tangible data exploration, data analysis workflows,

that were really, really hard, if not impossible, to do

before.

Jon Krohn: 37:48 And so how do you decide, when you're doing product

development, how do you decide to put something on

your roadmap at all, or to then prioritize highly a feature

like this where... Yeah, how do you decide which of these

kinds of force multipliers to include in your product?

Akshay Agrawal: 38:08 There's two angles, especially earlier on when we didn't

have that much feedback and it was me and my

co-founder just developing and jamming. With our

built-up experience of seeing, okay, here are some issues

that we've hit with working with traditional notebooks,

and we know a lot of others have, we have strong

opinions and we think this will land and we're just going

to trust our gut. So there was a lot of gut trusting in the

beginning, and there still is. Now with the product being

more mature, there's still gut trusting for big, new

features that we're working on, but we have a big

community, too, and so we can chat with them. And

actually they come to us, they're very vocal about what

features they want and they don't want.

Show Notes: http://www.superdatascience.com/911 20

http://www.superdatascience.com/911

 38:54 And I think the way we think about it is, is this

something that enables a broad class of users, so like

data scientist, data engineer, ML engineer, AI engineer, to

be far more productive than they would have been

otherwise in their previous tool of choice. And I think that

that is something... We call them big rocks. What are the

thing that really moves the needle for folks? And it needs

to move the needle a lot and it needs to move the needle

for a lot of people. Of course, we care a lot about craft and

design and visual design and usability. And so those

things are just always top of mind and they're ongoing,

but for the big, new features, they have to be big rocks,

how we think about it.

Jon Krohn: 39:40 Nice. I like that. Big rocks. And so you talked there about

community and how you can leverage them. So open

source projects often promise community, but not every

project earns it. So what do you think separates tools that

spark tons of devotion, like the Pluto project that you

were describing there, and Julia, what do you think

separates those from open source communities that fade?

And what are you going to do to ensure that you're in the

first category?

Akshay Agrawal: 40:11 Yeah, it's a good question. I think, honestly it sounds

basic, but a lot of it comes from the maintainers just

being really kind and open. If you want community, you

can't just say, I want community, but there are people out

there who are excited and you need to encourage them to

contribute and be really, really vocal about how much

you appreciate your community and also help them make

PRs if they want to, be super responsive on your Discord.

We try to respond really quickly to issues and especially

bug reports. One of the feedback we usually get from our

community who file issues is that they're shocked by how

quickly we fix their bugs. If someone files a bug, you

triage it and fix it and ship a release the same day, you

won a supporter for life.

Show Notes: http://www.superdatascience.com/911 21

http://www.superdatascience.com/911

Jon Krohn: 41:13 Oh, wow.

Akshay Agrawal: 41:14 Yeah, that's something that we've noticed. Something

we've also noticed from other popular Python projects,

like from Charlie Marsh, Astral's UV project. And I think

community's many levels. Not everyone has to ship code

to your project, although many people may want to, but

just encourage all kinds of engagement, and just make it

a fun place for people to hang out and learn.

Jon Krohn: 41:39 Nice. If we have listeners who would like to contribute to

the project, how should they get started?

Akshay Agrawal: 41:43 There's a few ways, and it depends on how you want to

contribute. So if you want to contribute code, you can

check out our GitHub issues, and some of the issues are

tagged as good first issue. And these are great places for

new contributors to get their feet wet and learn what the

code is like. And some of them are even improved

documentation. Just by the way, just generically a really

good way to start contributing code to a project; improve

the documentation. Other ways you can contribute is you

can just file a feature request or a bug report. We have a

little checkbox saying, "Are you willing to submit a PR for

this?" And if you are, and if it aligns with our roadmap,

then we'll work with you. And then more generally, we

have a Discord, so you can get the Discord link if you go

to marimo.io/discord. And there we have lots of free

flowing conversation and I think that there's a lot of good

touchpoints to get involved.

Jon Krohn: 42:43 Fantastic. And what if this is a listener's very first... What

if they've never contributed to open source before? Where

would you recommend they get started? How should they

get their feet wet with open source development?

Akshay Agrawal: 42:58 So actually we do have, I think, a number of contributors

we have made their first ever contribution with us. For

Show Notes: http://www.superdatascience.com/911 22

http://www.superdatascience.com/911

that, I'd say you see a typo in our docs, something like

that, I think that's a really good way to contribute. The

docs ones are, I think, I could be wrong, but I think if

you're just making a simple change, you might be able to

click edit in the repo itself online on github.com. It'll

create your fork for you and simplify that process. But

yeah, make a docs change. We have a contributing .MD

guide in the GitHub repo that tells you about, oh, you'll

need to make a pull request. What's a pull request? And

walk you through that workflow.

Jon Krohn: 43:46 Build the future of multi-agent software with AGNTCY.

The AGNTCY is an open source collective building the

internet of agents. It's a collaboration layer where AI

agents can discover, connect, and work across

frameworks. For developers, this means standardized

agent discovery tools, seamless protocols for inter-agent

communication, and modular components to compose

and scale multi-agent workflows. Join CrewAI,

LangChain, LlamaIndex, browser-based Cisco, and

dozens more. The AGNTCY is dropping code, specs and

services, no strings attached. Built with other engineers

who care about high quality multi-agent software. Visit

AGNTCY.org and add your support. That's AGNTCY.org.

 44:33 Nice. And then that brings me to maybe one of my last

technical questions for you, which is, this is completely

beyond Marimo, and so this is going back to the research

that you've done, you focused on machine learning and

optimization, and as an engineer you've contributed to

several open source projects from the deep learning

framework TensorFlow, that probably most of our

listeners are familiar with, to the Vector Embeddings

Computation Library. You're going to have to tell me how

people pronounce this, but it's PyMDE?

Akshay Agrawal: 45:06 Perfect.

Show Notes: http://www.superdatascience.com/911 23

http://www.superdatascience.com/911

Jon Krohn: 45:07 Oh, yeah. So it's P-Y and then the letters M, D and E. And

I'll have a link to that in the show notes. And so that

Vector Embeddings Computation Library, PyMDE, as well

as there's a convex optimization parser, which is also just

letters: CVXPY?

Akshay Agrawal: 45:30 CVXPY, yeah.

Jon Krohn: 45:34 CVXPY, that makes sense. And so half of your published

research relates to convex optimization. For our listeners

unfamiliar with the topic, could you expand on how

convex optimization differs from machine learning and

the kinds of questions that they can answer; precision

interpretability, scalability? Tell us about convex

optimization.

Akshay Agrawal: 45:57 So mathematical optimization in general is like, you have

some variables that you're trying to make an assignment

of values to. So for example, say we're trying to choose a

good stock portfolio, the variables is how much to invest

in each stock. And then you need something that tells

you whether or not your assignment to variables is good.

So that's a mathematical function. It's an objective

function that says, "Hey, what do I predict my return will

be if I make this investment?" And maybe it trades off.

Maybe it factors in risk into it as well. And then you have

some constraints like, "Well, I can't invest more money

than I have, and maybe I'm not allowed to short stocks."

So you have some constraints. And mathematical

optimization is then the process of finding an optimal

assignment of values to the variables to minimize the cost

or maximize the reward while satisfying constraints.

That's mathematical optimization.

 47:02 Convex optimization is just the subset of those problems

we know we can solve super efficiently, super reliably,

provably, and the use cases are somewhat different. So in

some sense, machine learning, especially classical

Show Notes: http://www.superdatascience.com/911 24

http://www.superdatascience.com/911

machine learning, logistic regression, SVMs, all these are

actually, under the hood they're using convex

optimization techniques to fit the models. In terms of use

cases out in the wild, what are people using CVXPY for

today? Well, one huge one is financial portfolio

construction. So many billions of dollars daily are

allocated through portfolio optimization problems, which

are solved with convex optimization problems. Energy

management, there's a lot of usage there as well.

Real-time control, like controlling a vehicle, landing a

rocket, like SpaceX uses convex optimization to land, I

think it's like the Falcon or something using software

developed by our lab. And so these are cases where you

can model the world and you have some understandable

constraints and you can really exploit the structure.

 48:13 Machine learning, sometimes there's typically not many

constraints are that kind of implicit. You don't really have

as good of an understanding of, well, what is the model

doing? And also you're just trying to find a solution that's

kind of good enough, that you know you're going to test it

out in the wild on unseen examples. And so the use case

of finding the optimal assignment, it doesn't even

necessarily always make as much sense. That said,

there's a lot of overlap. So the Vector Embeddings Library

that you mentioned, for that to fit these embeddings

using a GPU, we used, even though the problem was in

the machine learning domain, we used techniques from

convex optimization to solve it really, really efficiently.

Jon Krohn: 49:00 Nice. That was a beautiful explanation, as actually all of

your explanations today. You do a great job of taking

complex concepts and making them seem really

approachable. And it isn't just the language that you use;

you also have this really accessible tone. You make

everything just seem light and relaxed. I really like that.

It's been a joy interviewing you. Actually on the note of

you making things feel so accessible, on your personal

Show Notes: http://www.superdatascience.com/911 25

http://www.superdatascience.com/911

webpage, so AkshayAgrawal.com, which I'll have a link to

in the show notes, it says that your goal is to make

machine learning and math accessible and actionable.

What does actionable mean in this context? What's the

biggest gap today between mathematical tools and being

able to take action with those tools?

Akshay Agrawal: 49:55 Oh, I love that question. When you're in school or you're

taking a course, especially a traditional course, ie most of

them, they're teaching you, okay, this is logistic

regression, and then you write down the optimality

conditions by hand. You're computing some gradients and

you're like, okay, great. I did a bunch of homework on my

paper and I submitted a P-set. That's fine, and that's

good. I've done a lot of that in my life. But to make

something actionable and to make... I think what's really

cool about our field is that all that math, you can do real

things with it.

 50:38 And that's why PyTorch and TensorFlow and JAX and

PyMDE and CVXPY all exist. It's about using concepts

from math in order to affect real change in the world. And

so that's been the theme of the kind of projects that I've

chosen to work on from TensorFlow to CVXPY, PyMDE

and Marimo. Even though there is no math necessarily in

the Marimo code base, what it does is give you a really,

really tangible, interactive environment to work with your

data. And so it's making your data actionable. It's

actually useful, and you can actually run your notebook

as a script or share it as an app or reuse the code in it.

And so that theme is what resonates to me.

Jon Krohn: 51:28 For sure. You're building a platform to make the change

that you want to see in the world. I've loved everything

you've said about the Marimo product today and I'm so

glad that Shaun introduced us. It's been a great episode.

Before I let you go, Akshay, I always ask my guests for a

book recommendation, and actually I can see, and our

Show Notes: http://www.superdatascience.com/911 26

http://www.superdatascience.com/911

YouTube viewers can see, a huge bookshelf of books

behind you. So what have you got for us?

Akshay Agrawal: 51:52 I can recommend a couple. One that I most recently read

that really stuck with me, as well as one that I'm

currently reading. So I most recently read American

Prometheus, which is the biography of Robert

Oppenheimer. And so like many people, I watched

Oppenheimer. Like, I want to learn more and I want to

learn a lot more. So I read the book and it was really

fascinating, because it actually talks about not just the

events that happened, and not just the witch hunt of

Oppenheimer that happened after the war, but also what

is the social process of doing science and what are the

social factors that influenced someone who is as much of

a genius as Oppenheimer was to make certain decisions

that led him to develop the atomic bomb? And I thought

just having that broader context was super interesting. So

that's one.

 52:55 Another one that I'm currently reading that I would

recommend because it's already making an impact on my

life, is The Design of Everyday Things. So a classic in just

product design. It's taken me a long time to read it

because I'll go two pages, I'm like, oh man, I need to go

and improve something in Marimo. And so if you want

something, if you work in design or just like observing the

world, I think that that's a good read. It's already made

our product better.

Jon Krohn: 53:23 Fantastic. Two great and very different recommendations

for us. Love it. And then for people, our listeners like me

who have really enjoyed this conversation with you today,

what's the best way to follow your work or connect with

you going forward so that we can continue to get your

thoughts after the episode?

Show Notes: http://www.superdatascience.com/911 27

http://www.superdatascience.com/911

Akshay Agrawal: 53:41 Definitely. So I am on the major social media platforms.

So me personally, on X, my handle is Akshay K. Agrawal.

I sometimes post under the official Marimo channel,

which is Marimo_IO. I'm also on Bluesky as well. Those

are the best ways to follow me personally. And then

Marimo also has various social channels. So we're on

YouTube, we're on Bluesky, we're on Discord, and we

have a newsletter, marmo.io/newsletter if you want to

subscribe, which I personally write once a month.

Jon Krohn: 54:24 Nice. Love that. Thanks so much for taking the time out

of your busy founder schedule with us. Running an early

stage tech startup like this must be exhilarating, but also

very time-consuming. So it means a lot to me and to our

listeners that you took that time out. And thanks for

providing us with such a great episode.

Akshay Agrawal: 54:43 Thanks, Jon. Really appreciate it. It was a blast.

Jon Krohn: 54:49 I hope you enjoyed that episode and I hope you liked the

shorter intro to today's episode. Reach out to me on

LinkedIn with a DM or a comment if you weren't happy or

if you have any other ideas how we can improve the intro

or any other part of the show, really. Always love to hear

from you. We assume that if you listened to the entire

episode like you have today, that you'd probably still like

the full outro that we usually do. So here you go. In

today's episode, Akshay Agrawal covered the core

reproducibility problems with Jupyter notebooks, such as

hidden state traps, where cells can run out of order,

JSON file formats that break version control, and missing

package dependency tracking that makes notebooks

impossible to share reliably. He talked about how

Marimo's reactive execution model, that automatically

runs dependent cells when variables change, ensures

your notebook state always matches what's displayed on

screen.

Show Notes: http://www.superdatascience.com/911 28

http://www.superdatascience.com/911

 55:40 We talked about advanced interactivity features in

Marimo, including UI elements like sliders that trigger

real-time updates, the ability to select data points directly

from plots and receive them as data frames, and

instantly, an instant conversion from notebooks to

deployable data apps. That's cool. Akshay also talked

about the technical innovations that make Marimo

notebooks stored as pure Python files, enable command

line execution, function imports, and seamless integration

with existing development workflows. And finally, we

talked about how you can get involved with open source

projects like these Marimo notebooks if you'd like to as

well. You can get all the show notes including the

transcript for this episode, the video of recording, any

materials mentioned on the show, the URLs for Akshay's

social media profiles, as well as my own at

SuperDataScience.com/911. Thanks to everyone on the

SuperDataScience podcast team, our podcast manager,

Sonja Brajovic, our media editor, Mario Pombo, our

partnerships team, which is Nathan Daly and Natalie

Ziajski, our researcher, Serg Masís , writer, Dr. Zara

Karschay, and our founder, Kirill Eremenko.

 56:45 Thanks to all of them for producing another excellent

episode for us today. For enabling that super team to

create this free podcast for you, we are oh so grateful to

our sponsors. You can support this show by checking out

our sponsor's links, which are in the show notes. And if

you're interested in sponsoring an episode yourself, you

can get the details on how by making your way to

Johnkrohn.com/podcast. Otherwise, please help us out

by sharing the podcast, sharing this episode with

someone who would enjoy this episode. Review the

episode on your favorite podcasting app or on YouTube or

wherever you watch it or listen to it, subscribe obviously

if you're not already subscriber. But most importantly, I

hope you'll just keep on tuning in. I'm so grateful to have

you listening and hope I can continue to make episodes

Show Notes: http://www.superdatascience.com/911 29

http://www.superdatascience.com/911

you love for years and years to come. Till next time, keep

on rocking it out there and I'm looking forward to

enjoying another round of the SuperDataScience Podcast

with you very soon.

Show Notes: http://www.superdatascience.com/911 30

http://www.superdatascience.com/911

