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Jon Krohn: 00:00 Welcome to episode number 911. I'm your host, Jon 

Krohn. Starting with today's episode, we're trying out 

much shorter intros, so I'll quickly tell you that you're in 

for a treat with today's guest, Dr. Akshay Agrawal. 

Akshay has built a clever open source replacement for 

Jupyter Notebooks, based on the pain points he 

experienced with Notebooks while completing his PhD at 

Stanford. Akshay is smart, well-spoken, humble. I think 

you'll really enjoy this one. 

 00:25 This episode of SuperDataScience is made possible by 

Dell, NVIDIA and AWS. 

 00:32 Akshay, welcome to the SuperDataScience podcast. 

Where are you calling in from today? 

Akshay Agrawal: 00:36 I'm in the Bay Area in Redwood City. Thanks for having 

me, Jon. 

Jon Krohn: 00:39 Classic tech founder, AI tech founder, in the Bay Area. 

What are the odds? And you actually, you were 

introduced to me by Shaun Johnson, who is an investor 

at AIX Ventures in San Francisco, and if people are 

interested in hearing an episode involving what investors 

are looking for in AI startups and where the opportunities 

are for AI startups, or anybody building AI solutions for 

enterprises, that's episode 895. It's a great episode. 

Shaun is amazing. I guess you spend time with him in 

person in San Francisco sometimes? 

Akshay Agrawal: 01:16 Yeah, I do at the AIX office. I do spend time with him, and 

he is amazing. He definitely is. I've known him for how 

long now? A bit over a year, and I'll see him usually 

almost every week. 

Jon Krohn: 01:29 Oh wow, really? From what I could see in the 

background, and people can see it in the video version of 

895, it's a beautiful looking office. 
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Akshay Agrawal: 01:38 Yeah, the AIX office is very, very nice, up in San 

Francisco. 

Jon Krohn: 01:42 Nice. And so the reason why you're there once a week is 

because AIX has invested in your startup, which you are 

co-founder and CEO of, and it's Marimo. And so I want to 

start off with that name, because our researcher Serg 

Masis dug up that marimo means bouncy play ball that 

grows on water. And so it's a species of ball-shaped green 

algae native to Japan. Does that relate in any way to your 

company name? 

Akshay Agrawal: 02:13 Yes, sort of. I can give you two stories, okay? The outer 

story and the actual inner story. So the outer story is that 

Marimo is a next-generation computational notebook for 

Python, data and AI. And well, what are the previous 

generation ones, or what are related ones? So the one 

that most people know about is the Jupyter Notebook. 

Now the Jupyter, it's a very large sphere, a very large 

sphere. There's another notebook for a different 

programming language called Pluto.jl, but it was a 

smaller sphere. It's kind of cuter, some would say. And 

Marimo is the next-generation one for Python, even 

smaller sphere. Very adorable, very beloved, especially in 

Japanese culture, but also plant enthusiasts. 

 03:07 And Marimo moss balls, one thing that's actually cool 

about them is that they're actually assembled from these 

tiny strands of moss that all get clumped together and 

they live at the bottom of lake beds, and they intermix 

and mingle, and together they're greater than the sum of 

their parts. And Marimo Notebooks, in ways that we 

might discuss, are similar. They're collections of cells that 

when taken together are greater than the sum of the 

parts. So that's the story, conceptually, of what the name 

is. 

Jon Krohn: 03:41 Nice. 
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Akshay Agrawal: 03:41 Also- 

Jon Krohn: 03:42 There's a lot to that. Yeah, nice. Give me the also. 

Akshay Agrawal: 03:45 There's also an also, which is during the pandemic, my 

partner and I, we had a Marimo moss ball in our 

apartment, and we just really loved it and we were like, 

okay, this is the thing. We love this thing. Let's just call... 

Yeah. It just makes sense. It also abbreviates well. Import 

Marimo as MO, which is you need that two character 

abbreviation for Python libraries. 

Jon Krohn: 04:09 I love that. That's a great story. And they are super cute. I 

wasn't aware of them before, but I looked at some. And so 

I'm going to make a special request to our video editor, 

Mario, to overlay some cute photos from the internet of 

marimo balls, so that at least the people watching on 

YouTube can see some of those as you were describing it. 

And people who are in the audio only format, you're just 

going to have to look it up. If you're driving, don't do it 

while you're driving. But when you get to a stoplight, 

check them out. They're super cute. 

 04:45 Nice. So your work at Marimo was inspired in part by 

reproducibility pain. So anybody who has used Jupyter 

Notebooks has experienced difficulties with 

reproducibility, and I have lots to go into around that 

later in the episode. But just as a starting point, that kind 

of reproducibility pain that you experienced as a PhD 

student at Stanford, especially with things like coauthors 

handing you broken notebooks, and model training often 

beginning without checkpoints, version control or 

recorded data providence; tell us about those pain points 

that you experienced as a PhD student and how you came 

up with your solution. 

Akshay Agrawal: 05:27 Yeah, definitely. So for a bit of background, so I did my 

PhD in machine learning. It was 2018 to 2021, so I did it 
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at Stanford and I specialized in vector embeddings, high 

dimensionality vector dimensionality reduction. So 

finding structure in these high dimensional spaces. And 

so when you work on things like that, it's really important 

to be able to see your data while you work on it. So 

notebooks, and Jupyter Notebooks were super, super 

useful. Without that iterative experience, that kind of 

research would be way harder. So very grateful for having 

Jupyter Notebooks. But as I did that research, there were 

a few shortcomings, some of them having to do with 

reproducibility that came to the forefront as I worked with 

Jupyter Notebooks on an almost daily basis. And so when 

it comes to reproducibility and maintainability, there's a 

few different aspects. 

 06:32 So for one, the file format for Jupyter Notebooks, they are 

stored as these JSON blobs. And so you can't really reuse 

code across them easily without jumping through some 

hoops. So you end up just duplicating your notebooks for 

slightly different experiments. Whereas if you were writing 

software, you would just import functions from one 

module to another. But also this JSON blob made version 

control pretty hard, because you'll run a notebook and 

you might not even change any code, but maybe the 

image changes, or some metadata changes and you get a 

big git diff. So it's hard to know how your experiment 

code actually changed over time. 

 07:22 Another issue that would come up, and so for some uses 

of Jupyter... This is a feature that I'm about to describe, 

for some uses it is a feature. For the kinds of stuff where 

you're doing science or you're doing data engineering and 

you need things to be deterministic, it is not a feature, in 

my opinion at least. So in a Jupyter Notebook, you can 

run cells out of order. You can run cell number one, then 

cell number three, then cell number two, then cell 

number one again, and then maybe you forgot to run cell 

number three. Cell number three maybe depended on cell 
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number one, and you just totally forgot you never ran it. 

And the point is, now your program memory is in some 

strange sort of quantum state that you don't understand. 

And then you'll figure out four hours later, eight hours 

later, like, oh crap, none of my experiment results are 

valid. 

 08:17 And so that problem is broadly referred to as hidden 

state. And it just comes down to the fact that in a Jupyter 

Notebook, the notebook runtime doesn't know how your 

cells are related to each other. And so that was a big pain 

point. If you contrast that to an Excel, for example, if you 

update a value in a cell, everything recalculates and the 

world makes sense. And that doesn't happen by default in 

a Jupyter Notebook. And I'm talking a lot, but the last 

thing, and we can go into any of these, is package 

requirements. So when you're working with a notebook, 

you might forget to track what packages. If you use 

PyTorch, like this specific version of PyTorch, and this 

specific version of Transformers, you might just forget to 

put that down in a requirements.txt or a PyProject.toml, 

like researchers often did. But then that means when you 

pass your notebook to someone else, they can't get the 

same results that are serialized in it. And so then that's 

just another angle in which the reproducibility problem 

becomes front and center. 

Jon Krohn: 09:28 So yeah, we're going to get into more detail on 

reproducibility, all of the issues over the course of this 

episode, all the pain points that probably many of our 

listeners have experienced, and the solutions that you 

have for them. So I've got some of the key adjectives here 

around Marimo from our research. So it's open source, 

it's reproducible, it's git-friendly, it's AI native, and it's a 

reactive notebook. So a few things to dig into here. The 

open source thing, for example, you guys are doing very 

well. 4 million downloads I understand already at the 

time of recording, which is very cool. It must be amazing 
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to see people just voluntarily being like, "This is a 

solution for me. I need this tool," something that you've 

spent all this time writing and developing and leading the 

product on. So that must be cool. But what I want to talk 

about is the word "reactive" here. And so the idea is that 

it's a better tool, Marimo is a better tool, because it 

nudges users towards better data science practice by 

being reactive in this way. Tell us more about that. 

Akshay Agrawal: 10:30 Definitely. Nudges is a good word. One of our users 

described it as gentle parenting. So yeah, what reactive 

means, it's just a... What it means is that Marimo keeps 

the code on the page in sync with the outputs you see. So 

basically, say you have three cells, the first one says A = 

1. The second says B = A + 1. And the third one is C = A + 

B. And then you output those, you output the variable in 

each. So you see in the first cell A = 1; B = A + 1 = 2; and 

then C = A + B. 1 + 2 = 3. 

 11:16 Now what reactive means is if you go back to the first cell 

and change the value of A from 1 to 2, and then you run 

that cell, so you change the value of A = 1 to 2, and then 

you run it, the next two cells will automatically run with 

the updated value of A. And so their outputs will update 

to, if I can do this in my head right, 3 and 4 or something. 

So they'll recalculate like a spreadsheet, like you're used 

to. And why does this matter? Why is this a good thing? 

Two things. So one is actually it just leads to way faster 

data exploration. Like instead having to manually change 

the value of a variable and then hunt for all the other 

cells that use that variable, Marimo will just 

automatically run them and you can just see really 

quickly in real time, what did the new outputs look like? 

So that's one. 

 12:09 But the other one, which is maybe more subtle, is the 

reproducibility aspect, which is... Because if you forget to 

run a cell that depends on a variable you just changed, 
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now you can't trust any of the outputs in your notebook 

and your experiment is borked. So that's what reactivity 

gives you. And one thing, I'll just pause, because if there's 

machine learning practitioners or AI folks in here, the 

next question that always comes up, which I'll anticipate 

is, "Oh, but some of my cells are going to start kicking off 

like a GPU training job, and I don't want that to start 

automatically. It's expensive, I can't interrupt it." 

 12:50 And so for those situations, Marimo does have a button 

that says, "make execution", we call it lazy. And so if you 

do that, and if you run a cell, Marimo will just mark the 

other ones that depend on that cell as stale, but it won't 

auto run them and it'll give you a button to run them. So 

you still get guarantees on the reproducibility in the state, 

but you can rest easy that you're not accidentally 

spending your OpenAI credits or whatever you're doing 

that's expensive. 

Jon Krohn: 13:18 Nice. And so I guess that ties into how you've previously 

mentioned that Marimo's reactivity makes UI elements 

like sliders and plots substantially more useful than 

Jupyter Widgets. And I guess it's because of what you 

just described, where in the Jupyter Notebook you don't 

know necessarily... Any UI elements, any plots that you're 

outputting, any sliders you might have in the notebook, 

you don't know in the Jupyter Notebook whether those 

are being updated properly based on other changes that 

you've made. Is that where that reactivity becomes useful 

there or is it something else? 

Akshay Agrawal: 13:54 Yeah, no, that's essentially it. So in a traditional style 

notebook, if you had a slider, first of all, getting that 

hooked up to even propagate its value back to Python is 

challenging, you have to have callbacks and stuff. And 

even if you do, the things aren't going to automatically 

run with the updated value of your slider. So it's like, 

okay, what was the point? Whereas in Marimo, you 
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import Mario as MO into your Marimo notebook, and now 

you have access to a bunch of UI elements such as 

sliders. So you could replace the variable AI set. Instead 

of it just being an integer, it can be a slider. And now as 

you scrub the slider with your mouse, the other cells are 

automatically running as well. And so that's like the 

interactivity feeds into reactivity to give you a truly 

dynamic experience that can really, really speed up your 

data exploration. 

 14:48 One concrete example from the PhD that really helped 

what I really wanted to achieve, and I think we achieved 

pretty early, was you can even output plots in Marimo 

where you can select a cluster of a scatterplot with your 

mouse, and then those points get sent automatically back 

to Python as a data frame and then for downstream 

analysis. So it really opens up new kinds of interactive 

experiences. 

Jon Krohn: 15:14 This episode of Super Data Science is brought to you by 

the Dell AI Factory with NVIDIA, two trusted technology 

leaders united to deliver a comprehensive and secure AI 

solution. Dell Technologies and NVIDIA can help you 

leverage AI to drive innovation and achieve your business 

goals. The Dell AI Factory with NVIDIA is the industry's 

first and only end-to-end enterprise AI solution, designed 

to speed AI adoption by delivering integrated Dell and 

NVIDIA capabilities to accelerate your AI-powered use 

cases, integrate your data and workflows, and enable you 

to design your own AI journey for repeatable, scalable 

outcomes. Learn more at 

www.dell.com/SuperDataScience. That's 

dell.com/SuperDataScience. 

 16:01 Nice. That's really cool. I appreciate the tangible example, 

something that's always useful for our listeners, for sure. 

And another feature that seems really cool to me is that 

when you have the notebook maybe into a state that 
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you're happy with, you actually could hide the code cells 

and then all of a sudden you have a data app just ready 

to go. Is that right? 

Akshay Agrawal: 16:26 Yeah, that's exactly right. So a Marimo notebook collapses 

the space between notebooks and data apps. Now all your 

notebooks can be just notebooks. They don't have to be 

anything more, but if you want to, yeah, you just push a 

button and then boom, you don't have just a notebook, 

you have a full-fledged data app, which by the way is 

actually pretty performant. Unlike Streamlit, in Marimo, 

you slide a slider, it's only going to run the things that 

depend on the slider. It's not going to rerun the whole 

notebook. And yeah, that data app, you can serve it on a 

server, you can even run it entirely in the browser with a 

technology called Web Assembly. So really easy to share 

these artifacts. 

Jon Krohn: 17:05 Nice. I love that. And then, so it just occurred to me, this 

actually wasn't in our research, but this is an open 

source project, Marimo, but you have Venture Data, 

Sean's invested in your company, AIX and other investors 

are expecting a return, what's the commercial angle for 

you? 

Akshay Agrawal: 17:25 So Marimo as the open source, what we're doing is we're 

providing the best programming environment for 

individuals to work with their own data. And you can still 

use it successfully at your own company or at a company. 

We have many people using Marimo in companies, very 

large as well as small, cutting edge startups. As far as 

commercialization goes, whereas Marimo is the best place 

for individuals to work with their own data, there's still a 

lot of gaps in order to work with data in your enterprise at 

scale, especially doing rapid experimentation with very 

large datasets. So there's a lot of unsolved problems 

there, and that's where we plan to commercialize. 
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Jon Krohn: 18:06 That sounds like a really great strategy, a great 

commercialization strategy, so people can get the full use 

of your tool as individuals. And so I think this is 

something that would often be called product-led growth, 

PLG, where you have users that are volunteering to try 

this product out, and in a situation like yours where 

you're getting millions of downloads, it's obviously 

working well, it's about as well as PLG goes. But then 

there's kinds of features that enterprises are looking for 

around security, for example, maybe collaboration, maybe 

file storage. There's all kinds of ways that it would be 

impossible to offer those things for free to people. There 

would be substantial costs to the creator of that kind of 

functionality. And so it makes perfect sense to then be 

offering those as a commercial offering. 

 18:59 And it's something that we've seen, going back a couple of 

decades, tools like RStudio, they followed a similar kind of 

trajectory. They become the default IDE for, at that time, 

using R, which was very popular for data science, data 

analytics some years ago. And it still is. It still gets used 

today, but Python is now the lingua franca in data 

science, and it's great to see Marimo developing a great 

environment, and I love how you can get so quickly from 

a notebook to a working data app. That's something cool 

that I haven't seen. I haven't seen it done exactly like that 

before. I think that could be great. 

 19:46 So onto my next question. You've talked about a vision 

where you go from, as we've been talking about this whole 

episode, where you go from these error-prone 

JSON-based scratch pads that Jupyter Notebooks are, 

into a full stack developer platform, where exploration 

and deployment converge, just as in having a data app 

there ready to go instantly. So when tools collapse the 

boundary between notebook and application, that seems 

to change not just workflows, but also how roles work. So 

as this line blurs, what kinds of new responsibilities and 
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skills should our listeners adapt? Or does this just mean 

that they don't have to develop engineering skills? So how 

does it change things for our listeners who are maybe 

developing data applications, developing models for 

deployment? And then after you've thought about how it 

changes things for an individual, how does it change 

things for an organization in terms of research, 

engineering, operations, something like Marimo seems to 

break down a lot of silos. 

Akshay Agrawal: 20:58 Yeah, that's a really good question. I think it's an astute 

observation. So in terms of the individual, like the 

practitioner, data scientist or even ML engineer, AI 

engineer, data engineer, I think the way that I think about 

it is that Marimo gives them new capabilities to make 

their work just far more useful in the organization. And 

that gets into your second question, too: how does that 

change things within an organization? So the data app is 

one good example. Previously you may have done your 

experiment in a notebook and then you're like, "Okay, 

where's the front end engineer who can help me actually 

build an application around this to make my work 

actionable?" At best, you might try to reach for something 

like Streamlit, but you would hit performance bottlenecks 

there rather quickly. It's like with Marimo, there's no 

migration phase, like your notebook. Should you want it 

to, just change a couple of variables to sliders or 

dropdowns or tables or whatever you need. And then all 

of a sudden you have a data app that you can then share 

with your team, but also to your CEO. 

 22:05 So actually in a number of companies that are using us, 

CEOs are using Marimo notebooks that their data 

scientists made for them. Sometimes the CEOs are 

actually making their own Marimo notebooks to run their 

own operations, just because the barrier entry is so low 

and it's even lower once you consider LLM integrations 

that we have, just like vibe code your way through a 
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pretty simple tool that you can make. So that is one way 

that I think Marimo gives the data scientist new 

capabilities and also brings new people into the fold. 

There is another way, and it has to do with what you 

mentioned of Marimo notebooks being stored as Python 

files, because actually every Marimo notebook is an 

executable script. It's just a Python file. You can go to the 

command line, say Python, mynotebook.py, even pass a 

command line arguments. So from your notebook, now 

you actually have a workflow that you can run as a 

pipeline or as a Cron. And so that's yet another way, by 

reducing that friction, we've now made you hopefully a lot 

more productive. 

 23:13 And also, there's a lot of alsos, but because it's a Python 

file, you can actually say from my notebook, import my 

function or import my class. And when you do that, that 

means that... There's famously, for many years now, 

people have talked about the notebook to production 

handoff, the researcher to engineer handoff, that makes 

that handoff a lot less difficult, a lot more streamlined. 

Because as nudges you to write better code, and it gives 

you these reusable functions, you can actually give your 

notebook to someone and they can import it and just use 

the logic. You could even write tests for your Marimo 

notebook. Marimo works with Pytest, so that's another 

way that it makes notebooks actually more useful in the 

engineering context as well. 

Jon Krohn: 24:05 Nice. Probably during that part of the video version of 

this, we would've had the camera all on you, Akshay, but 

I was nodding my head aggressively throughout that 

whole time because that kind of functionality that you 

just described there is so useful. That would be an 

amazing functionality in terms of being able to call my 

notebooks from the command line or be able to pull in 

classes into other programs that I have running, or other 

scripts that I'm developing. That is super cool. And it's 
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pretty amazing because, well, maybe it's just because it 

flows naturally from topic to topic, but our next question 

that I had for you was on exactly that. 

 24:49 So let's get to what I had right after that, which was 

around AI assistance. So this is something that a lot of 

our listeners, including myself, are huge fans of Cursor as 

an IDE, and part of that is because LLMs make it very 

easy to write code. All of a sudden whole functions are 

just appearing before our eyes. So it's kind of like an 

autocomplete on steroids if people have the experience. 

For people who haven't used Cursor, it's similar to what 

something like Gmail does today or even a Google search 

where you get the next few words suggested, but it ends 

up sometimes it's like whole function appears in front of 

you in Cursor. And so it sounds like Marimo also has a 

kind of AI assistant involved. Tell us about it. 

Akshay Agrawal: 25:45 Yeah, definitely. So in the Marimo editor, Marimo as a 

notebook works like most notebooks. You see something 

in your browser Python cells where you can type code in, 

you see outputs. And also there's a few different points, 

four, I think, at which AI is integrated into our editor. So 

the most prominent one you'll see is a button that says 

Generate with AI. And so that's what it sounds like, so 

you can generate Python code, or SQL code, I should 

mention. So Marimo has native support for SQL, and you 

can use essentially whatever AI backend you like. So you 

can connect to OpenAI, Anthropic, Gemini, you can also 

use Ollama to run local models. But the point is, what 

makes a notebook a unique experience, and makes our 

notebook a unique experience for using an LLM, is that 

while you actually have data in memory, and that's really 

different from traditional software engineering where it's 

just text files, here you have a running notebook session, 

you have data frames in memory, you have tables in 

memory. 
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 26:52 So what you can do is you can say something like, "Hey, 

using my data frame," and you tag your data frame, 

"using @df, do a group by the country column and 

aggregate over all numerical columns.' And then what 

Marimo will do behind the scenes, it'll pull the data frame 

from memory, look at the schema, get some sample 

values, and pass that in as part of your prompt, so that 

when you get the generated code, it actually has the 

column names in it and it'll actually work. And that's 

something subtle, but you won't be able to get that from 

just using Cursor on the text files. And that alone is a 

huge productivity boost, I think. 

Jon Krohn: 27:34 Nice. I'm so glad that you were able to... I feel kind of bad, 

almost, when someone like you, startup founder, comes 

on the show and is talking about their product, and I'm 

like, how about this other product? 

Akshay Agrawal: 27:47 No, no, no, no. 

Jon Krohn: 27:48 But Cursor is something that a lot of people have 

experience using, and so thank you for that explanation 

of how it works in Marimo, and also the kinds of things 

you can do. It sounds like you've been thinking about 

ways that data scientists in particular, or AI ML 

engineers, in particular data analysts, people who are 

used to the Jupyter environment, how they would benefit 

most from an AI assistant, which adds kinds of features 

like you just described there around data frames being 

populated like you'd expect. So, super cool. And that 

actually is a great segue to my next question, which is 

around, you've previously said that there was a joy to 

rethinking a system from first principles as you set about 

creating Marimo. So you get to have an opinion on how 

the tool should be designed. And so it sounds like, if our 

research is correct, you began Marimo with a 2,500 word 

design document. So yeah, tell us about that experience 
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of coming up with this opinionated tool from scratch, 

what that was like. 

Akshay Agrawal: 29:00 Oh yeah, it was a ton of fun. So this was right after I 

finished my PhD, so 2022. At that point, like we talked 

about, I used notebooks a ton during my PhD. There were 

still some gaps. And so what I got the opportunity to do is 

that I had some free space and I got to just study the 

landscape, got to really dig into, well, what do people like 

about notebooks? Interactivity, seeing your outputs live, 

and also what are people doing in other ecosystems? 

What kind of innovations, what kind of ideas are people 

playing with, what are they innovating on? And so that 

process took me through... I did research basically, and 

that's when I discovered the Pluto notebook for the Julia 

programming link, which it felt like something out of the 

future to me, because it has these concepts. So Pluto 

predates Marimo, and it's a big source of inspiration. 

 29:58 It has reactive execution, it has UI elements, it's stored as 

a Julia file. It doesn't have the web app thing, but I looked 

at that and I'm like, well, wow, that's really close to a data 

app and we can build that functionality in. And so that 

was a huge inspiration for me. Python has its own 

challenges of making something like that work. So then 

the next step was writing a design doc, like, well, how do 

you... It's like you're threading this needle. How do you 

design a batteries included experience where you have a 

notebook, it doubles as an app, and it triples as a script 

or as a module. And what I didn't want was a bunch of 

kluges to... It had to feel seamless and it had to feel 

frictionless. And that's why there was this design 

iteration. And I was lucky, though, because I wasn't 

designing in a vacuum. 

 30:49 So it's part of what we didn't chat about, so before we got 

funding from AIX Ventures, Marimo was built with close 

input from researchers at Stanford SLAC National 

Show Notes: http://www.superdatascience.com/911   16 

http://www.superdatascience.com/911


 
 

 
 
 
 
 

Laboratory, Department of Energy Laboratory, as well as 

with some industry researchers at a couple of startups. 

And so I would have ideas and throw them at them and 

they would give feedback, and you could see some of 

these early design documents, and some of the ideas were 

just totally horrible. But I got to work with them to refine 

them and make them a lot better. And I think that was a 

really special time. 

Jon Krohn: 31:27 Curious about Trainium2, the latest AI chip purpose built 

by AWS for large scale training and inference? Each 

Trainium2 instance packs a punch, with 20.8 petaflops of 

compute power. But here's where things get really 

exciting. The new Trainium2 Ultra Servers combine 64 

chips to deliver a massive 83 petaflops in a single node. 

These Trainium2 instances deliver 30 to 40% better price 

performance relative to GPU alternatives. Major players in 

AI like Anthropic and Databricks, along with innovative 

startups like Poolside, have teamed up with AWS to power 

their next gen AI projects on Trainium2. Want to see what 

Trainium2 can do for your AI workloads? Check out the 

links in the show notes. Now back to the show. 

 32:15 Nice. That does sound like a great experience and 

hopefully something that's inspiring for any of our 

listeners out there that are thinking about building a 

product. It sounds like you had a great way of getting 

going on that. Thinking about the best parts, the worst 

parts of the development experience for data scientists. 

You've put a great product together, it's really cool. 

Something that we talked about earlier, right at the onset 

of the episode and that would've come up, I'm sure, as 

you were developing the product in that Word document, 

is this reproducibility issue. So the Jupyter Notebook has 

been a very standard tool for a decade now for data 

scientists, but you've cited a study previously showing 

that only 4% of Jupyter Notebooks reproduce their 

original results due to issues that you call the hidden 
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state trap, among other kinds of problems. Do you want 

to dig into these kinds of problems with reproducibility 

that Jupyter Notebooks have and how Marimo resolves 

them? 

Akshay Agrawal: 33:18 Definitely. So just to caveat this discussion, I think every 

notebook does have its place. And with Jupyter 

Notebooks, I think they are well suited to REPL workflows 

where maybe you're not shooting for reproducibility, but 

you're quickly really hacking things. The issue is, though, 

then, I think because it's such a great environment for 

interactive coding, people started using them and really 

relying on them for use cases where reproducibility is 

paramount, like data engineering, like science and like 

machine learning. And so the question was dig into some 

of those reproducibility issues and how Marimo solves 

them. So two main classes. So one is the issue of hidden 

state where in a Jupyter Notebook you run a cell, 

Jupyter's not going to run the cells that depend on it, like 

the cells that use its variables. And it's up to you to 

remember all the complicated dependencies that might 

flow through your notebook, and you're going to forget 

some. I often did. And so now your notebook is in some 

weird inconsistent state. So that's one issue. 

 34:24 To make that really pronounced, so in a traditional 

notebook like Jupyter, say you have a cell that, it's got a 

bunch of code in it, and maybe one thing that that cell 

does is create some PyTorch model class, instantiate 

some class. And then say you delete that cell, and then 

you continue coding elsewhere in the notebook. You 

deleted that cell, but say you didn't realize that that was 

the cell that defined the model class, and you really 

wanted that model class around. But in Jupyter, if you 

delete that cell, that model is still in memory for the time 

being. And so your rest of your notebook will work as you 

want it to work. But you come back the next day and you 

run the notebook from scratch, nothing works, and you're 
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like, what happened? And it's like, oh crap, I deleted the 

cell that defined the model and I really needed that. 

 35:14 So in Marimo, if you do that, if you delete the cell that 

defines your model variable, it'll tell you. It'll remove the 

model from memory and it'll invalidate the other cells. It'll 

be like, "Yo, that variable is no longer around. You can't 

do this anymore." And so it'll catch bugs immediately 

when you introduce them. So that's one big way. And the 

second big way is package management. And so Marimo 

has a special opt-in package manager, which I think is 

really neat. So basically if you start Marimo in a mode 

that we call sandbox, from the command line or however, 

every time you install a package (Marimo has a very nice, 

slick package installation UI), we'll save the package that 

you installed and the version as a comment or an entry in 

the notebook file itself. 

 36:06 And now when you come back to the notebook a second 

time and you do run it, Marimo will create an isolated 

virtual environment for you that has just those packages. 

So that means that you can just send a single notebook 

file around and people can just run it without even 

thinking about what packages they need to install, which 

makes them more reproducible, but also just a lot more 

portable. It's really easy to just create these single 

standalone tools and share them. 

Jon Krohn: 36:32 I had more aggressive head nodding there while you were 

describing all that. I'm going to have to start using 

Marimo myself. Very, very cool. So something else that I 

think is really cool about functionality that we've learned 

that I want to... It's something that's so visual and so 

easy to understand. It's something that would feel to me 

like magic, as somebody who has really only used Jupyter 

Notebooks before for this kind of script development. So it 

sounds like it's possible, correct me if I'm wrong, that 

because of the way that you've thought about data 
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analysts, data scientist, data people's experience from the 

ground up with developing this tool, it allows you to do 

things like highlight, select the data with your mouse in a 

scatter plot, and then get it back as a data frame. Is that 

right? 

Akshay Agrawal: 37:25 Yeah, that's right. Yeah, that's an example. 

Jon Krohn: 37:27 That's crazy. 

Akshay Agrawal: 37:29 Yeah, it feels really nice. And I really needed this during 

my PhD and I didn't have it. So it really enables really, 

really tangible data exploration, data analysis workflows, 

that were really, really hard, if not impossible, to do 

before. 

Jon Krohn: 37:48 And so how do you decide, when you're doing product 

development, how do you decide to put something on 

your roadmap at all, or to then prioritize highly a feature 

like this where... Yeah, how do you decide which of these 

kinds of force multipliers to include in your product? 

Akshay Agrawal: 38:08 There's two angles, especially earlier on when we didn't 

have that much feedback and it was me and my 

co-founder just developing and jamming. With our 

built-up experience of seeing, okay, here are some issues 

that we've hit with working with traditional notebooks, 

and we know a lot of others have, we have strong 

opinions and we think this will land and we're just going 

to trust our gut. So there was a lot of gut trusting in the 

beginning, and there still is. Now with the product being 

more mature, there's still gut trusting for big, new 

features that we're working on, but we have a big 

community, too, and so we can chat with them. And 

actually they come to us, they're very vocal about what 

features they want and they don't want. 
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 38:54 And I think the way we think about it is, is this 

something that enables a broad class of users, so like 

data scientist, data engineer, ML engineer, AI engineer, to 

be far more productive than they would have been 

otherwise in their previous tool of choice. And I think that 

that is something... We call them big rocks. What are the 

thing that really moves the needle for folks? And it needs 

to move the needle a lot and it needs to move the needle 

for a lot of people. Of course, we care a lot about craft and 

design and visual design and usability. And so those 

things are just always top of mind and they're ongoing, 

but for the big, new features, they have to be big rocks, 

how we think about it. 

Jon Krohn: 39:40 Nice. I like that. Big rocks. And so you talked there about 

community and how you can leverage them. So open 

source projects often promise community, but not every 

project earns it. So what do you think separates tools that 

spark tons of devotion, like the Pluto project that you 

were describing there, and Julia, what do you think 

separates those from open source communities that fade? 

And what are you going to do to ensure that you're in the 

first category? 

Akshay Agrawal: 40:11 Yeah, it's a good question. I think, honestly it sounds 

basic, but a lot of it comes from the maintainers just 

being really kind and open. If you want community, you 

can't just say, I want community, but there are people out 

there who are excited and you need to encourage them to 

contribute and be really, really vocal about how much 

you appreciate your community and also help them make 

PRs if they want to, be super responsive on your Discord. 

We try to respond really quickly to issues and especially 

bug reports. One of the feedback we usually get from our 

community who file issues is that they're shocked by how 

quickly we fix their bugs. If someone files a bug, you 

triage it and fix it and ship a release the same day, you 

won a supporter for life. 

Show Notes: http://www.superdatascience.com/911   21 

http://www.superdatascience.com/911


 
 

 
 
 
 
 

Jon Krohn: 41:13 Oh, wow. 

Akshay Agrawal: 41:14 Yeah, that's something that we've noticed. Something 

we've also noticed from other popular Python projects, 

like from Charlie Marsh, Astral's UV project. And I think 

community's many levels. Not everyone has to ship code 

to your project, although many people may want to, but 

just encourage all kinds of engagement, and just make it 

a fun place for people to hang out and learn. 

Jon Krohn: 41:39 Nice. If we have listeners who would like to contribute to 

the project, how should they get started? 

Akshay Agrawal: 41:43 There's a few ways, and it depends on how you want to 

contribute. So if you want to contribute code, you can 

check out our GitHub issues, and some of the issues are 

tagged as good first issue. And these are great places for 

new contributors to get their feet wet and learn what the 

code is like. And some of them are even improved 

documentation. Just by the way, just generically a really 

good way to start contributing code to a project; improve 

the documentation. Other ways you can contribute is you 

can just file a feature request or a bug report. We have a 

little checkbox saying, "Are you willing to submit a PR for 

this?" And if you are, and if it aligns with our roadmap, 

then we'll work with you. And then more generally, we 

have a Discord, so you can get the Discord link if you go 

to marimo.io/discord. And there we have lots of free 

flowing conversation and I think that there's a lot of good 

touchpoints to get involved. 

Jon Krohn: 42:43 Fantastic. And what if this is a listener's very first... What 

if they've never contributed to open source before? Where 

would you recommend they get started? How should they 

get their feet wet with open source development? 

Akshay Agrawal: 42:58 So actually we do have, I think, a number of contributors 

we have made their first ever contribution with us. For 
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that, I'd say you see a typo in our docs, something like 

that, I think that's a really good way to contribute. The 

docs ones are, I think, I could be wrong, but I think if 

you're just making a simple change, you might be able to 

click edit in the repo itself online on github.com. It'll 

create your fork for you and simplify that process. But 

yeah, make a docs change. We have a contributing .MD 

guide in the GitHub repo that tells you about, oh, you'll 

need to make a pull request. What's a pull request? And 

walk you through that workflow. 

Jon Krohn: 43:46 Build the future of multi-agent software with AGNTCY. 

The AGNTCY is an open source collective building the 

internet of agents. It's a collaboration layer where AI 

agents can discover, connect, and work across 

frameworks. For developers, this means standardized 

agent discovery tools, seamless protocols for inter-agent 

communication, and modular components to compose 

and scale multi-agent workflows. Join CrewAI, 

LangChain, LlamaIndex, browser-based Cisco, and 

dozens more. The AGNTCY is dropping code, specs and 

services, no strings attached. Built with other engineers 

who care about high quality multi-agent software. Visit 

AGNTCY.org and add your support. That's AGNTCY.org. 

 44:33 Nice. And then that brings me to maybe one of my last 

technical questions for you, which is, this is completely 

beyond Marimo, and so this is going back to the research 

that you've done, you focused on machine learning and 

optimization, and as an engineer you've contributed to 

several open source projects from the deep learning 

framework TensorFlow, that probably most of our 

listeners are familiar with, to the Vector Embeddings 

Computation Library. You're going to have to tell me how 

people pronounce this, but it's PyMDE? 

Akshay Agrawal: 45:06 Perfect. 
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Jon Krohn: 45:07 Oh, yeah. So it's P-Y and then the letters M, D and E. And 

I'll have a link to that in the show notes. And so that 

Vector Embeddings Computation Library, PyMDE, as well 

as there's a convex optimization parser, which is also just 

letters: CVXPY? 

Akshay Agrawal: 45:30 CVXPY, yeah. 

Jon Krohn: 45:34 CVXPY, that makes sense. And so half of your published 

research relates to convex optimization. For our listeners 

unfamiliar with the topic, could you expand on how 

convex optimization differs from machine learning and 

the kinds of questions that they can answer; precision 

interpretability, scalability? Tell us about convex 

optimization. 

Akshay Agrawal: 45:57 So mathematical optimization in general is like, you have 

some variables that you're trying to make an assignment 

of values to. So for example, say we're trying to choose a 

good stock portfolio, the variables is how much to invest 

in each stock. And then you need something that tells 

you whether or not your assignment to variables is good. 

So that's a mathematical function. It's an objective 

function that says, "Hey, what do I predict my return will 

be if I make this investment?" And maybe it trades off. 

Maybe it factors in risk into it as well. And then you have 

some constraints like, "Well, I can't invest more money 

than I have, and maybe I'm not allowed to short stocks." 

So you have some constraints. And mathematical 

optimization is then the process of finding an optimal 

assignment of values to the variables to minimize the cost 

or maximize the reward while satisfying constraints. 

That's mathematical optimization. 

 47:02 Convex optimization is just the subset of those problems 

we know we can solve super efficiently, super reliably, 

provably, and the use cases are somewhat different. So in 

some sense, machine learning, especially classical 
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machine learning, logistic regression, SVMs, all these are 

actually, under the hood they're using convex 

optimization techniques to fit the models. In terms of use 

cases out in the wild, what are people using CVXPY for 

today? Well, one huge one is financial portfolio 

construction. So many billions of dollars daily are 

allocated through portfolio optimization problems, which 

are solved with convex optimization problems. Energy 

management, there's a lot of usage there as well. 

Real-time control, like controlling a vehicle, landing a 

rocket, like SpaceX uses convex optimization to land, I 

think it's like the Falcon or something using software 

developed by our lab. And so these are cases where you 

can model the world and you have some understandable 

constraints and you can really exploit the structure. 

 48:13 Machine learning, sometimes there's typically not many 

constraints are that kind of implicit. You don't really have 

as good of an understanding of, well, what is the model 

doing? And also you're just trying to find a solution that's 

kind of good enough, that you know you're going to test it 

out in the wild on unseen examples. And so the use case 

of finding the optimal assignment, it doesn't even 

necessarily always make as much sense. That said, 

there's a lot of overlap. So the Vector Embeddings Library 

that you mentioned, for that to fit these embeddings 

using a GPU, we used, even though the problem was in 

the machine learning domain, we used techniques from 

convex optimization to solve it really, really efficiently. 

Jon Krohn: 49:00 Nice. That was a beautiful explanation, as actually all of 

your explanations today. You do a great job of taking 

complex concepts and making them seem really 

approachable. And it isn't just the language that you use; 

you also have this really accessible tone. You make 

everything just seem light and relaxed. I really like that. 

It's been a joy interviewing you. Actually on the note of 

you making things feel so accessible, on your personal 
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webpage, so AkshayAgrawal.com, which I'll have a link to 

in the show notes, it says that your goal is to make 

machine learning and math accessible and actionable. 

What does actionable mean in this context? What's the 

biggest gap today between mathematical tools and being 

able to take action with those tools? 

Akshay Agrawal: 49:55 Oh, I love that question. When you're in school or you're 

taking a course, especially a traditional course, ie most of 

them, they're teaching you, okay, this is logistic 

regression, and then you write down the optimality 

conditions by hand. You're computing some gradients and 

you're like, okay, great. I did a bunch of homework on my 

paper and I submitted a P-set. That's fine, and that's 

good. I've done a lot of that in my life. But to make 

something actionable and to make... I think what's really 

cool about our field is that all that math, you can do real 

things with it. 

 50:38 And that's why PyTorch and TensorFlow and JAX and 

PyMDE and CVXPY all exist. It's about using concepts 

from math in order to affect real change in the world. And 

so that's been the theme of the kind of projects that I've 

chosen to work on from TensorFlow to CVXPY, PyMDE 

and Marimo. Even though there is no math necessarily in 

the Marimo code base, what it does is give you a really, 

really tangible, interactive environment to work with your 

data. And so it's making your data actionable. It's 

actually useful, and you can actually run your notebook 

as a script or share it as an app or reuse the code in it. 

And so that theme is what resonates to me. 

Jon Krohn: 51:28 For sure. You're building a platform to make the change 

that you want to see in the world. I've loved everything 

you've said about the Marimo product today and I'm so 

glad that Shaun introduced us. It's been a great episode. 

Before I let you go, Akshay, I always ask my guests for a 

book recommendation, and actually I can see, and our 
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YouTube viewers can see, a huge bookshelf of books 

behind you. So what have you got for us? 

Akshay Agrawal: 51:52 I can recommend a couple. One that I most recently read 

that really stuck with me, as well as one that I'm 

currently reading. So I most recently read American 

Prometheus, which is the biography of Robert 

Oppenheimer. And so like many people, I watched 

Oppenheimer. Like, I want to learn more and I want to 

learn a lot more. So I read the book and it was really 

fascinating, because it actually talks about not just the 

events that happened, and not just the witch hunt of 

Oppenheimer that happened after the war, but also what 

is the social process of doing science and what are the 

social factors that influenced someone who is as much of 

a genius as Oppenheimer was to make certain decisions 

that led him to develop the atomic bomb? And I thought 

just having that broader context was super interesting. So 

that's one. 

 52:55 Another one that I'm currently reading that I would 

recommend because it's already making an impact on my 

life, is The Design of Everyday Things. So a classic in just 

product design. It's taken me a long time to read it 

because I'll go two pages, I'm like, oh man, I need to go 

and improve something in Marimo. And so if you want 

something, if you work in design or just like observing the 

world, I think that that's a good read. It's already made 

our product better. 

Jon Krohn: 53:23 Fantastic. Two great and very different recommendations 

for us. Love it. And then for people, our listeners like me 

who have really enjoyed this conversation with you today, 

what's the best way to follow your work or connect with 

you going forward so that we can continue to get your 

thoughts after the episode? 
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Akshay Agrawal: 53:41 Definitely. So I am on the major social media platforms. 

So me personally, on X, my handle is Akshay K. Agrawal. 

I sometimes post under the official Marimo channel, 

which is Marimo_IO. I'm also on Bluesky as well. Those 

are the best ways to follow me personally. And then 

Marimo also has various social channels. So we're on 

YouTube, we're on Bluesky, we're on Discord, and we 

have a newsletter, marmo.io/newsletter if you want to 

subscribe, which I personally write once a month. 

Jon Krohn: 54:24 Nice. Love that. Thanks so much for taking the time out 

of your busy founder schedule with us. Running an early 

stage tech startup like this must be exhilarating, but also 

very time-consuming. So it means a lot to me and to our 

listeners that you took that time out. And thanks for 

providing us with such a great episode. 

Akshay Agrawal: 54:43 Thanks, Jon. Really appreciate it. It was a blast. 

Jon Krohn: 54:49 I hope you enjoyed that episode and I hope you liked the 

shorter intro to today's episode. Reach out to me on 

LinkedIn with a DM or a comment if you weren't happy or 

if you have any other ideas how we can improve the intro 

or any other part of the show, really. Always love to hear 

from you. We assume that if you listened to the entire 

episode like you have today, that you'd probably still like 

the full outro that we usually do. So here you go. In 

today's episode, Akshay Agrawal covered the core 

reproducibility problems with Jupyter notebooks, such as 

hidden state traps, where cells can run out of order, 

JSON file formats that break version control, and missing 

package dependency tracking that makes notebooks 

impossible to share reliably. He talked about how 

Marimo's reactive execution model, that automatically 

runs dependent cells when variables change, ensures 

your notebook state always matches what's displayed on 

screen. 
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 55:40 We talked about advanced interactivity features in 

Marimo, including UI elements like sliders that trigger 

real-time updates, the ability to select data points directly 

from plots and receive them as data frames, and 

instantly, an instant conversion from notebooks to 

deployable data apps. That's cool. Akshay also talked 

about the technical innovations that make Marimo 

notebooks stored as pure Python files, enable command 

line execution, function imports, and seamless integration 

with existing development workflows. And finally, we 

talked about how you can get involved with open source 

projects like these Marimo notebooks if you'd like to as 

well. You can get all the show notes including the 

transcript for this episode, the video of recording, any 

materials mentioned on the show, the URLs for Akshay's 

social media profiles, as well as my own at 

SuperDataScience.com/911. Thanks to everyone on the 

SuperDataScience podcast team, our podcast manager, 

Sonja Brajovic, our media editor, Mario Pombo, our 

partnerships team, which is Nathan Daly and Natalie 

Ziajski, our researcher, Serg Masís , writer, Dr. Zara 

Karschay, and our founder, Kirill Eremenko. 

 56:45 Thanks to all of them for producing another excellent 

episode for us today. For enabling that super team to 

create this free podcast for you, we are oh so grateful to 

our sponsors. You can support this show by checking out 

our sponsor's links, which are in the show notes. And if 

you're interested in sponsoring an episode yourself, you 

can get the details on how by making your way to 

Johnkrohn.com/podcast. Otherwise, please help us out 

by sharing the podcast, sharing this episode with 

someone who would enjoy this episode. Review the 

episode on your favorite podcasting app or on YouTube or 

wherever you watch it or listen to it, subscribe obviously 

if you're not already subscriber. But most importantly, I 

hope you'll just keep on tuning in. I'm so grateful to have 

you listening and hope I can continue to make episodes 
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you love for years and years to come. Till next time, keep 

on rocking it out there and I'm looking forward to 

enjoying another round of the SuperDataScience Podcast 

with you very soon. 
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