In this case study, we will assume that you work as a data
scientist at a bank in Taiwan.

The bank has collected extensive data about its customers
such as demographics, historical payments record, amount of
bill dollar values.

Data has been collected between April 2005 to September
2005.

The data consists of 25 variables. Let’s explore these variables
in the next slide!

Data Source: https://www.kaggle.com/uciml/default-of-credit-card-
clients-dataset

OUTPUT:

INPUTS:

default.payment.next.month: Default payment (1=yes, 0=no)

ID: ID of each client
LIMIT_BAL: Amount of given credit in NT dollars (includes individual a
nd family/supplementary credit
SEX: Gender (I=male, 2=female)
EDUCATION: (1=graduate school, 2=university, 3=high school, 4=other
s, 5=unknown, 6=unknown)

MARRIAGE: Marital status (1=married, 2=single, 3=others)

AGE: Age in years

PAY_0O: Repayment status in September, 2005 (-

1=pay duly, 1=payment delay for one month, 2=payment delay for two
montbhs, ... 8=payment delay for eight months, 9=payment delay for n
ine months and above)

PAY_2: Repayment status in August, 2005 (scale same as above)
PAY_3: Repayment status in July, 2005 (scale same as above)
PAY_4: Repayment status in June, 2005 (scale same as above)
PAY_5: Repayment status in May, 2005 (scale same as above)
PAY_6: Repayment status in April, 2005 (scale same as above)

« INPUTS (CONTINUED):
* BILL_AMTI: Amount of bill statement in September, 2005 (NT dollar)
* BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)
« BILL_AMT3: Amount of bill statementin July, 2005 (NT dollar)
* BILL_AMT4: Amount of bill statementin June, 2005 (NT dollar)
« BILL_AMTS: Amount of bill statement in May, 2005 (NT dollar)
« BILL_AMT6: Amount of bill statementin April, 2005 (NT dollar)

« PAY_AMTI: Amount of previous payment in September, 2005 (NT do
llar)

* PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar) s
- PAY_AMT3: Amount of previous paymentin July, 2005 (NT dollar)
 PAY_AMT4: Amount of previous paymentin June, 2005 (NT dollar)
« PAY_AMTS: Amount of previous payment in May, 2005 (NT dollar)
* PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)

XGBOOST: INTRODUCTION

» XGBoost or Extreme gradient boosting is the
algorithm of choice for many data scientists and
could be used for regression and classification
tasks.

« XGBoost is a supervised learning algorithm and
implements gradient boosted trees algorithm. KX |

* The algorithm work by combining an ensemble of s picture is derived

from Greek mythology: the
prgdlctlons from several w.ealf quels. giont Orion corried 1o
« Itis robust to many data distributions and servant Cedalion on his

shoulders to act as the giant's

relationships and offers many hyperparameters to ...
tune model performance.

« Xgboost offers increased speed and enhanced
memory utilization.

« Xgboost is analogous to the idea of “discovering
truth by building on previous discoveries”.

"If | have seen further it is by standing on the shoulders of
Giants”, Isaac Newton

Source: https://commons.wikimedia.org/wiki/File:Library of Congress, Rosenwald 4, Bl. 5r.jpg

ADVANTAGES AND DISADVANTAGES OF
XGBOOST

ADVANTAGES

* No need to perform any feature scaling

« Can work well with missing data

« Robust to outliers in the data

« Can work well for both regression and classification

« Computationally efficient and produce fast predictions

« Works with distributed training: AWS can distribute the
training process and data on many machines

DISADVANTAGES

« Poor extrapolation characteristics
* Need extensive tuning
 Slow training

DISADVANTAGES OF XGBOOST: POOR
EXTRAPOLATION CAPABILITY BY XGBOOST

« Out of bound inference with XGBoost will cause issues and result in
unreasonable predictions

LINEAR REGRESSION XGBOOST
& ARTIFICIAL NEURAL NETWORKS & RANDOM FOREST

4 O 4
0000

AGE
})O
AGE

MODEL PREDICTIONS O
(INFERENCE)

(J
TRAINING DATA ®

> o
SAVINGS SAVINGS

XGBOOST: WHAT IS BOOSTING?

« Boosting works by learning from previous mistakes (errors in
model predictions) to come up with better future predictions.

« Boosting is an ensemble machine learning technique that works
by training weak models in a sequential fashion.

« Each modelis trying to learn from the previous weak model and
become better at making predictions.

« Boosting algorithms work by building a model from the training
data, then the second model is built based on the mistakes
(residuals) of the first model. The algorithm repeats until the
maximum number of models have been created or until the model
provides good predictions.

Run model' Reweighting Run model
and data _wnh of data and and data with
equal weights model new weights

Great Resource: https://medium.com/greyatom/a-quick-guide-to-boosting-in-ml-
acf7c1585cb5
Photo Credit: https://commons.wikimedia.org/wiki/File:Boosting.png

XGBOOST: BOOSTING EXAMPLE

* Model #1 works by attempting to classify the two classes (+) and (-)
with the vertical line shown.

* Model #1 has assignhed equal weights to all data points since it has no
prior knowledge or experience from before.

« Model #1 misclassified 3 (+) samples.

XGBOOST: BOOSTING EXAMPLE

Model #2 learns from the mistakes of the previous model and
assighs more weight to the wrongly classified data points (3 +) as
shown in the figure below.

So model #2 draws a vertical separating line and “made sure” to
properly classify these points this time!

The model did a great job correctly classifying points with higher
weights but in the process, it has misclassified two red (-) samples.

XGBOOST: BOOSTING EXAMPLE

 Model #3 learns from the mistakes of the previous model and
assigns more weight to the wrongly classified data points (2 -)
as shown in the figure below.

« So model #3 draws a horizontal separating line and “made
sure” to properly classify these points this time!

« The model did a great job correctly classifying points with
higher weights but in the process, it has misclassified two blue
(+) samples.

XGBOOST: BOOSTING EXAMPLE

* Model #4 combines all the mistakes from all these weak models to
build a much stronger model that correctly classifies all data
points.

XGBOOST: WHAT IS ENSEMBLE LEARNING?

« XGBoost is an example of ensemble learning.

« Ensemble techniques such as bagging and boosting can offer an
extremely powerful algorithm by combining a group of relatively
weak/average ones.

« For example, you can combine several decision trees to create a
powerful random forest algorithm.

« By Combining votes from a pool of experts, each will bring their
own experience and background to solve the problem resulting in a
better outcome.

« Boosting can reduce variance and overfitting and increase the
model robustness.

« Example: Blind men and the elephant

, . VOTING
Photo Credit: '
https://commons.wikimedia.org/wiki/File:BlI 1

ind men and elephant.png

XGBOOST: DECISION TREES ENSEMBLES

« Decision Trees are supervised Machine Learning technique where
data is split according to a certain condition/parameter.
* The tree consists of decision nodes and leaves.
o Leaves are the decisions or the final outcomes.
o Decision nodes are where the data is split based on a certain attribute.

« The tree ensemble model consists of a set of classification and
regression trees (CART).

« A CART that classifies whether an individual will like a computer
game X or not is shown below.

« Members of the family are divided into leaves and a score is assighed
to each leaf.

Input: age, gender, occupation, ... Like the computer game X

DECISION NODES

/+2

Source: https://xgboost.readthedocs.io/en/latest/tutorials/model.html

prediction score in each leaf

LEAVES

XGBOOST: DECISION TREES ENSEMBLES

« Ensemble models that combines the predictions from all
trees is built as shown below.

« The prediction scores of each individual tree are summed
up to get the final score.

tree1 tree2

Source: https://xgboost.readthedocs.io/en/latest/tutorials/model.html

XGBOOST: STEPS

« XGBoost repeatedly builds new models and combine them into an
ensemble model

« Initially build the first model and calculate the error for each
observation in the dataset

« Then you build a new model to predict those residuals (errors)
« Then you add prediction from this model to the ensemble of models

« XGboost is superior compared to gradient boosting algorithm since
it offers a good balance between bias and variance (Gradient
boosting only optimized for the variance so tend to overfit training
data while Xgboost offers regularization terms that can improve
model generalization).

BUILD A MODEL TO
PREDICT THOSE ERRORS

CALCULATE THE
INITIAL MODEL ERRORS BASED ON
{STARTING POINT) THE PREVIOUS
MODEL {RESIDUALS)
ADD LAST MODEL TO THE
\

XGBOOST: GRADIENT BOOSTING
ALGORITHM

e X—;
als am

/

[,\[[Il‘)
SCALING FACTOR ‘7,7J

+ LEARNING RATE x _
a0 e e

XGBOOST: GRADIENT BOOSTING
ALGORITHM

» Gradient boost works by building a tree based on the error
(residuals) from the previous tree.

» Gradient boost scales the trees and then adds the predictions from
the new tree to the predictions from previous trees.

« Example adopted from the awesome StatQuest (by Josh Starmer):
https://www.youtube.com/watch?v=3CC4N423GJc&t=87s

Weight (Kg) ;}
Male 88 P
Female 76 - _

Female 56
Male 73
Male 77

Female 57

VARIABLE TO BE

INPUT FEATURES PREDICTED

XGBOOST: GRADIENT BOOSTING

ALGORITHM

average weight is 71.2

« Let’s assume that the initial model predictions (starting point) is the [
71.2 J

« Gradient boost builds a tree based on the error from the first tree.
« The tree is built by assuming that the features (heights, color, and

INITIAL STARTING

gender) predicts the residuals (new column that we have just POINT (PREDICTIONS)
created).

Weight (Kg)
Male 88

Female 76

Female 56
Male 73
Male 77

Female 57

ERRORS
(RESIDUALS)

INPUT FEATURES

Error = True — predicted

88-71.2=16.8
76-71.2=4.8
56-71.2=-15.2
73-71.2=1.8

77-71.2=5.8 [11322] [4.8][1.8,5.8] [16.8]
57-71.2=-14.2

Example adopted from the awesome StatQuest (by Josh Starmer):

https://www.youtube.com/watch?v=3CC4N4z3GJc&t=87s

XGBOOST: GRADIENT BOOSTING
ALGORITHM

* Note that the number of leaves is restricted to 4 in this example
for the sake of simplicity.

« Let’s replace the values with the average a shown below.

Average,; = (—15.2—-14.2)/2 = —14.7
Average, = (1.8+5.8)/2 = 3.8

Example adopted from the awesome StatQuest (by Josh Starmer):
https://www.youtube.com/watch?v=3CC4N4z3GJc&t=87s

XGBOOST: GRADIENT BOOSTING
ALGORITHM

 Now that we have built a tree, let’s combine the previous predictions with the
new tree to generate new predictions!

712

AVERAGE WEIGHT

(INITIAL GUESS FROM
PREVIOUS STEP 47| 48][1858 | | 16.8

e The model predictions
Weight (Kg) New predictions match the true weight. This
Male 88 88 indicates that the model is

overfitting the training data
Female 76 f 9 9

Female 56
Male 73
Male 77

Predictions = 71.2+16.8=88

Female 57

Example adopted from the awesome StatQuest (by Josh Starmer):
https://www.youtube.com/watch?v=3CC4N4z3GJc&t=87s

XGBOOST: GRADIENT BOOSTING ALGORITHM

We add a learning rate (range from O to 1) to overcome this issue.

This parameter is used for scaling purposes by adjusting newly added information from the new tree.
Adding this tree and scaling it with the learning rate helps us get a little closer to the true values.

By taking smaller steps, the model results in better predictions on the testing dataset (low variance).

712 LEARNING RATE
0.1 Height <1.6 Is not Blue?
AVERAGE WEIGHT .

(INITIAL GUESS FROM Y N Y N
PREVIOUS STEP [147] [48][1.8’5_8] [16.8]

Gender
Male

Weight (Kg)

New predictions

72.9
Female
Female
Male
Male

Predictions =71.2+0.1 *
16.8=72.9

Female

XGBOOST: GRADIENT BOOSTING

* Now let’s build another tree with the new Initial Residuals
residuals from the new predictions.
RECALL THAT THES_E/-> 16.8
ARE THE INITIAL
RESIDUALS o
-15.2
Predictions = 71.2+ Lo
0.1 * 16.8=72.9 5.8
-14.2
Gender Weight (Kg) New predictions New Residuals
Male 88 88-72.9=15.1
Female 76 4.3
Female 56 -13.7
Male 73 1.4
Male 77 54

Female 57 -12.7

RESIDUALS
HAVE GONE
DOWN!

XGBOOST: GRADIENT BOOSTING
ALGORITHM |,7,|

| 712 + I.EARNING RATE x
T— H ht <1.6 | BI ?

(INITIAL GUESS FROM

PREVIOUS STEP m m[“’”] Uss]
,7]

NOW YOU CAN
LEARN'NG RATE
el ®

PREDICTIONS BY
COMBINING ALL [J E 1] L 1
THE SCALED |’ ‘|

PREDICTIONS
LEARNING RATE
FROM ALL TREES + x

" 00O

XGBOOST: WHAT IS THE EXTREME GRADIENT

BOOSTING THEN? GREAT RESOURCES

Paper: https://arxiv.org/pdf/1603.02754.pdf

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

[cs.LG] 10 Jun 2016

XGBoost: A Scalable Tree Boosting System

Tiangi Chen
University of Washington
tgchen@cs.washington.edu

ABSTRACT

Tree boosting is a highly effective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords

Large-scale Machine Learning

Carlos Guestrin
University of Washington
guestrin@cs.washington.edu

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package”. The impact of the system has heen
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions * published at Kaggle's
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success

XGBOOST: PAPER HIGHLIGHTS

“The most important factor behind the success of XGBoost is its
scalability in all scenarios. The system runs more than ten times
faster than existing popular solutions on a single machine and
sc?l{es to billions of examples in distributed or memory-limited
settings.”

« “The scalability of XGBoost is due to several important systems
and algorithmic optimizations. These innovations include: a
novel tree learning algorithm is for handling sparse data; a
theoretically justified weighted quantile sketch procedure

enables handling instance weights in approximate tree learning.

Parallel and distributed computing makes learning faster which

enables quicker model exploration’.

« “More importantly, XGBoost exploits out-of-core computation
and enables data scientists to process hundred millions of
examples on a desktop”.

« “Finally, it is even more exciting to combine these techniques to
make an end-to-end system that scales to even larger data with
the least amount of cluster resources’.

Paper: https://arxiv.org/pdf/1603.02754.pdf

SAGEMAKER XGBOOST: OVERVIEW

« Recently, XGBoost is the go to algorithm for most
developers and has won several Kaggle competitions.

 Why does Xgboost work really well?

« Since the technique is an ensemble algorithm, it is very
robust and could work well with several data types
and complex distributions.

« Xgboost has a many tunable hyperparameters that
could improve model fitting.

« What are the applications of XGBoost?

« XGBoost could be used for fraud detection to detect
the probability of a fraudulent transactions based on

transaction features.

SAGEMAKER XGBOOST: INPUT/OUTPUT DATA

- Gradient boosting uses tabular data for inputs/outputs:
« Rows represent observations,
* One column represents the output or target label
* The rest of the columns represent the inputs (features)
« Amazon SageMaker implementation of XGBoost supports the
following file format for training and inference :
« CSV
* libsvm
« Xgboost does not support protobuf format (note: this is uniqus

compared to other Amazon SageMaker algorithms, which use
the protobuf training input format).

SAGEMAKER XGBOOST: EC2 INSTANCE

« XGBoost currently only trains using CPUs.

« XGboost is memory intensive algorithm so it does not
require much compute.

* Mé4: General-purpose compute instance is recommended.

SAGEMAKER XGBOOST: HYPERPARAMETERS

« There is over 40 hyperparameters to tune Xgboost algorithm
with AWS SageMaker

 Here’re the tree most important ones:

« Max_depth (O - inf): is critical to ensure that you have the
right balance between bias and variance. If the max_depth is
set too small, you will underfit the training data. If you
increase the max_depth, the model will become more
complex and will overfit the training data. Default value is 6.

« Gamma (0 - inf): Minimum loss reduction needed to add
more partitions to the tree.

https://docs.aws.amazon.com/sagemaker/latest
/dg/xgboost hyperparameters.html

SAGEMAKER XGBOOST: HYPERPARAMETERS

« Eta (0 - 1): step size shrinkage used in update to prevents
overfitting and make the boosting process more conservative.
After each boosting step, you can directly get the weights of
new features, and eta shrinks the feature weights.

« Alpha: L1 regularization term on weights. regularization term to
avoid overfitting. The higher the gamma the higher the
regularization. If gamma is set to zero, no regularization is put
in place.

 Lambda: L2 regularization

CONFUSION MATRIX

TRUE CLASS

TYPE | ERROR

SNOILOId34dd

TYPE Il ERROR

