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1. UNSUPERVISED LEARNING (CLUSTERING) K-MEANS 

•  K-means is an unsupervised learning algorithm (clustering).

•  K-means works by grouping some data points together (clustering) 

in an unsupervised fashion.

•  The algorithm groups observations with similar attribute values 

together by measuring the Euclidian distance between points.

A. CONCEPT
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1.   Choose number of clusters “K”

2.  Select random K points that are going to be the centroids for each 

cluster

3.  Assign each data point to the nearest centroid, doing so will enable 

us to create “K” number of clusters 

4.  Calculate a new centroid for each  cluster

5.  Reassign each data point to the new closest centroid

6.  Go to step 4 and repeat.

•  Calculate the “Within Cluster Sum of Squares (WCSS)” for various 

values of K (number of clusters).

•  Plot the WCSS vs. K and choose the elbow of the curve as the optimal 

number of clusters to use.

B. K-MEAN ALGORITHM STEPS

C. HOW TO CHOOSE OPTIMAL NUMBER OF K?

Within Cluster Sum of Squares (WCSS)

= distance(Pi, C1 )
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D. HOW TO IMPLEMENT K-MEANS IN SCI-KIT LEARN?

2. TIME SERIES FORECASTING 

•  Predictive models attempt at forecasting future sales based on 

historical data while taking into account seasonality effects, demand, 

holidays, promotions, and competition.

•  Facebook Prophet is open source software released by Facebook’s 

Core Data Science team. Prophet is a procedure for forecasting time 

series data based on an additive model where non-linear trends are 

fit with yearly, weekly, and daily seasonality, plus holiday effects. 

A. CONCEPT

>> k = 4  #specify the number of clusters

>> kmeans = KMeans(k)

>> kmeans.fit(X_train)

>> labels = kmeans.labels_
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•  Prophet implements an additive regression model with four 

elements:

•  Additive Regression model takes the form: 

The functions ƒj (xj) are unknown smoothing functions fit from the data 

1.   A piecewise linear, Prophet automatically picks up change 

points in the data and identifies any change in trends.  

2.  A yearly seasonal component modeled using Fourier series.

3.  A weekly seasonal component.

4.  A holiday list that can be manually provided.

Y = β0 + ƒj Xj + ϵ
p

j=1
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B. FACEBOOK PROPHET 

>> from fbprophet import Prophet

>> data_df = data_df.rename(columns = {'Date': 'ds', 'Sales: 'y'})

>> m = Prophet()

>> m.fit(data_df)

>> future = m.make_future_dataframe(periods = 720)

>> forecast = m.predict(future)

>> figure = m.plot(forecast)

3. REGRESSION TASKS

•  Regression is used to predict the value of one variable Y based on 

another variable X.

•  X is called the independent variable and Y is called the dependant 

variable.

•  Simple Linear regression is a statistical model that examines linear 

relationship between two variables only.

•  Multiple Linear Regression examines the relationship between more 

than two variables.

•  Each independent variable has its own corresponding coefficient.

A. CONCEPT

y = b0 + b1 * x1 + b2 * x2 + .. + bnxn
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•  Least squares fitting is a way to find the best fit curve or line for a set 

of points. 

•  The sum of the squares of the offsets (residuals) are used to estimate 

the best fit curve or line.

•  Least squares method is used to obtain the coefficients m and b. 

B. LEAST SQUARES CONCEPT

C. IMPLEMENT MULTIPLE LINEAR REGRESSION IN 
SCIKIT-LEARN 

>> from sklearn.linear_model import LinearRegression

>> regressor = LinearRegression(fit_intercept =True)

>> regressor.fit(X_train,y_train)

>> print('Linear Model Coefficient (m): ', regressor.coef_)

>> print('Linear Model Coefficient (b): ', regressor.intercept_)

D. EVALUATE THE MODEL (MAKE PREDICTIONS USING 
TRAINED MODEL) 

>> y_predict = regressor.predict( X_test)

>> y_predict
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>> y_predict = regressor.predict( X_test)

>> y_predict

4. CLASSIFICATION TASKS

•  Logistic regression algorithm works by implementing a linear 

equation first with independent predictors to predict a value.

•  This value is then converted into a probability that could range from 

0 to 1

•  Logistic regression can be used as a classification technique by 

setting a threshold value (Ex: 0.5) to predict binary outputs with two 

possible values labeled "0" or "1"

•  Therefore, Logistic model output can be one of two classes: pass/fail, 

win/lose, healthy/sick

A. LOGISTIC REGRESSION CONCEPT

B. LOGISTIC REGRESSION IN SCI-KIT LEARN 

4.1. CLASSIFICATION USING LOGISTIC REGRESSION

>> from sklearn.linear_model import LogisticRegression

>> Logistic_Regressor = LogisticRegression(random_state = 0)

>> Logistic_Regressor.fit(X_train, y_train)

Linear equation:

y = b0 + b1 * x

Apply Sigmoid function:

P(x) = sigmoid (y)

P(x) = 1
1+e−y

P(x) = 1
1+e−(b0+b1*x)
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•  Random Forest Classifier is a type of ensemble algorithm. 

•  It creates a set of decision trees from randomly selected subset of 

training set. 

•  It then combines votes from different decision trees to decide the 

final class of the test object. 

•  It overcomes the issues with single decision trees by reducing the 

effect of noise. 

•  Overcomes overfitting problem by taking average of all the 

predictions, cancelling out biases.

A. RANDOM FOREST REGRESSION CONCEPT

B. RANDOM FOREST CLASSIFIER IN SCI-KIT LEARN 

4.2. CLASSIFICATION USING RANDOM FOREST 
CLASSIFIER

>> from import  sklearn.ensemble RandomForestClassifier 

>> RandomForest = RandomForestClassifier(n_estimators=250) 

>> RandomForest.fit(X_train, y_train)
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5. DEEP LEARNING AND COMPUTER VISION

•  Artificial Neural Networks are information processing models 

inspired by the human brain. ANNs are built in a layered fashion 

where inputs are propagated starting from the input layer through 

the hidden layers and finally to the output. 

A. ARTIFICIAL NEURAL NETWORKS CONCEPT 
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outlined below:
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B. BUILD AN ANNS USING KERAS

>> import tensorflow.keras

>> from keras.models import Sequential

>> from keras.layers import Dense

>> from sklearn.preprocessing import MinMaxScaler

>> model = Sequential()

>> model.add(Dense(25, input_dim=5, activation='relu'))

>> model.add(Dense(25, activation='relu'))

>> model.add(Dense(1, activation='linear'))

>> model.summary()

C. TRAIN AN ANN USING KERAS

>> model.compile(optimizer='adam', loss='mean_squared_error')

>> epochs_hist = model.fit(X_train, y_train, epochs=20, 

batch_size=25, validation_split=0.2

>> X_Testing = np.array([[input #1, input #2, input #3,.., input 

#n]])

>> y_predict = model.predict(X_Testing)

D. EVALUATE THE TRAINED ANN MODEL

E. HOW TO BUILD A CONVOLUTIONAL NEURAL NETWORK 
(CNN)

•  CNNs is a type of deep neural networks that are commonly used for 

image classification.



•  CNNs are formed of (1) Convolutional Layers (Kernels and feature 

detectors), (2) Activation Functions (RELU), (3) Pooling Layers (Max 

Pooling or Average Pooling), and (4) Fully Connected Layers 

(Multi-layer Perceptron Network).
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F. BUILD A CNN USING KERAS:

>> from keras.models import Sequential

>> from keras.layers import Conv2D, MaxPooling2D, 

AveragePooling2D, Dense, Flatten, Dropout

>> from keras.optimizers import Adam

>> from keras.callbacks import TensorBoard

>> cnn_model = Sequential()

>> cnn_model.add(Conv2D(filters = 32, kernel_size=(3,3), 

activation = 'relu', input_shape = (32,32,3)))

>> cnn_model.add(Conv2D(filters = 32, kernel_size=(3,3), 

activation = 'relu'))

>> cnn_model.add(MaxPooling2D(2,2))

>> cnn_model.add(Dropout(0.3))



6. NATURAL LANGUAGE PROCESSING (TOKENIZATION)

A. CONCEPT

•  Tokenization is a common procedure in natural language processing. 

Tokenization works by dividing a sentence into a set of words. These 

words are then used to train a machine learning model to perform a 

certain task. 

B. TOKENIZATION USING SCIKIT-LEARN

>> from sklearn.feature_extraction.text import CountVectorizer

>> vectorizer = CountVectorizer()

>> output = vectorizer.fit_transform(data_df])

7. CLASSIFICATION MODELS ASSESSMENT (CONFUSION 
MATRIX/CLASSIFICATION REPORT

A. CONFUSION MATRIX CONCEPT

A confusion matrix is used to describe the performance of a 

classification model: 

>> cnn_model.add(Flatten())

>> cnn_model.add(Dense(units = 512, activation = 'relu'))

>> cnn_model.add(Dense(units = 10, activation = 'softmax'))



•  True positives (TP): cases when classifier predicted TRUE (has a 

disease), and correct class was TRUE (patient has disease). 

•  True negatives (TN): cases when model predicted FALSE (no disease), 

and correct class was FALSE (patient does not have disease). 

•  False positives (FP) (Type I error): classifier predicted TRUE, but 

correct class was FALSE (patient does not have disease). 

•  False negatives (FN) (Type II error): classifier predicted FALSE (patient 

do not have disease), but they actually do have the disease 

•  Classification Accuracy = (TP+TN) / (TP + TN + FP + FN)

•  Misclassification rate (Error Rate) = (FP + FN) / (TP + TN + FP + FN) 

•  Precision = TP/Total TRUE Predictions = TP/ (TP+FP) (When model 

predicted TRUE class, how often did it get it right?) 

•  Recall = TP/ Actual TRUE = TP/ (TP+FN) (when the class was actually 

TRUE, how often did the classifier get it right?)

Type I error

TRUE CLASS

PREDICTIONS

Type II error

TRUE ++ FALSE +

+ −

FALSE −− TRUE −



8. REGRESSION MACHINE LEARNING MODELS METRICS

A. MEAN ABSOLUTE ERROR (MAE)

•  Mean Absolute Error (MAE) is obtained by calculating the absolute 

difference between the model predictions and the true (actual) 

values

•  MAE is a measure of the average magnitude of error generated by 

the regression model

•  The mean absolute error (MAE) is calculated as follows:

•  MAE is calculated by following these steps:

B. CONFUSION MATRIX IN SKLEARN 

>> from sklearn.metrics import   classification_report, 

confusion_matrix 

>> y_predict_test = classifier.predict(X_test) 

>> cm = confusion_matrix(y_test, y_predict_test) 

>> sns.heatmap(cm, annot=True)

C. CLASSIFICATION REPORT 

>> from sklearn.metrics import classification_report 

>> print(classification_report(y_test, y_pred))

MAE=
1
n

|yi − ŷi |
i= 1



•  If MAE is zero, this indicates that the model predictions are perfect

1.    Calculate the residual for every data point

2.   Calculate the absolute value (to get rid of the sign)

3.   Calculate the average of all residuals

B. MEAN SQUARE ERROR (MSE)

•  Mean Square Error (MSE) is very similar to the Mean Absolute Error 

(MAE) but instead of using absolute values, squares of the difference 

between the model predictions and the training dataset (true values) 

is being calculated.

•  MSE values are generally large compared to the MAE since the 

residuals are being squared. 

•  In case of data outliers, MSE will become much larger compared to 

MAE

•  In MSE, error increases in a quadratic fashion while the error 

increases in proportional fashion in MAE

•  The MSE is calculated as follows:

•  MAE is calculated by following these steps:

1.    Calculate the residual for every data point

MSE =
1
n

yi − ŷi
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2.   Calculate the squared value of the residuals

3.   Calculate the average of all residuals

1.    Calculate the residual for every data point

C. ROOT MEAN SQUARE ERROR (RMSE)

•  Root Mean Square Error (RMSE) represents the standard deviation of 

the residuals (i.e.: differences between the model predictions and the 

true values (training data)).

•  RMSE can be easily interpreted compared to MSE because RMSE 

units match the units of the output.  

•  RMSE provides an estimate of how large the residuals are being 

dispersed.

•  The MSE is calculated as follows:

•  RMSE is calculated by following these steps:

1.    Calculate the residual for every data point

2.   Calculate the squared value of the residuals

3.   Calculate the average of the squared residuals

4.   Obtain the square root of the result

MSE=
1
n

yi − ŷi
2

n

i= 1



D. MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

•  MAE values can range from 0 to infinity which makes it difficult to 

interpret the result as compared to the training data. 

•  Mean Absolute Percentage Error (MAPE) is the equivalent to MAE but 

provides the error in a percentage form and therefore overcomes 

MAE limitations.

•  MAPE might exhibit some limitations if the data point value is zero 

(since there is division operation involved)

•  The MAPE is calculated as follows:

E. MEAN PERCENTAGE ERROR (MPE)

•  MPE is similar to MAPE but without the absolute operation 

•  MPE is useful to provide an insight of how many positive errors as 

compared to negative ones

•  The MPE is calculated as follows:

MAPE=
100%

n
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n
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