
ar
X

iv
:1

31
2.

56
63

v2
  [

cs
.L

G
] 

 2
2 

M
ar

 2
01

4

k-Sparse Autoencoders

Alireza Makhzani makhzani@psi.utoronto.ca

Brendan Frey frey@psi.utoronto.ca

University of Toronto, 10 King’s College Rd. Toronto, Ontario M5S 3G4, Canada

Abstract

Recently, it has been observed that when rep-
resentations are learnt in a way that encour-
ages sparsity, improved performance is ob-
tained on classification tasks. These meth-
ods involve combinations of activation func-
tions, sampling steps and different kinds of
penalties. To investigate the effectiveness
of sparsity by itself, we propose the “k -
sparse autoencoder”, which is an autoen-
coder with linear activation function, where
in hidden layers only the k highest activities
are kept. When applied to the MNIST and
NORB datasets, we find that this method
achieves better classification results than de-
noising autoencoders, networks trained with
dropout, and RBMs. k -sparse autoencoders
are simple to train and the encoding stage
is very fast, making them well-suited to large
problem sizes, where conventional sparse cod-
ing algorithms cannot be applied.

1. Introduction

Sparse feature learning algorithms range from sparse
coding approaches (Olshausen & Field, 1997) to
training neural networks with sparsity penalties
(Nair & Hinton, 2009; Lee et al., 2007). These meth-
ods typically comprise two steps: a learning algorithm
that produces a dictionary W that sparsely represents
the data {xi}Ni=1, and an encoding algorithm that,
given the dictionary, defines a mapping from a new
input vector x to a feature vector.

A practical problem with sparse coding is that both
the dictionary learning and the sparse encoding steps
are computationally expensive. Dictionaries are usu-
ally learnt offline by iteratively recovering sparse codes

International Conference on Learning Representations,
ICLR 2014

and updating the dictionary. Sparse codes are com-
puted using the current dictionary W and a pursuit
algorithm to solve

ẑi = argmin
z

∥xi −Wz∥2
2

s.t. ∥z∥0 < k (1)

where zi, i = 1, ..,N are the columns of Z. Convex
relaxation methods such as ℓ1 minimization or greedy
methods such as OMP (Tropp & Gilbert, 2007) are
used to solve the above optimization. While greedy al-
gorithms are faster, they are still slow in practice. The
current sparse codes are then used to update the dic-
tionary, using techniques such as the method of opti-
mal directions (MOD) (Engan et al., 1999) or K-SVD
(Aharon et al., 2005). These methods are computa-
tionally expensive; MOD requires inverting the data
matrix at each step and K-SVD needs to compute a
SVD in order to update every column of the dictionary.

To achieve speedups, in (Gregor & LeCun, 2010;
Kavukcuoglu et al., 2010), a parameterized non-linear
encoder function is trained to explicitly predict sparse
codes using a soft thresholding operator. However,
they assume that the dictionary is already given and
do not address the offline phase.

Another approach that has been taken recently is to
train autoencoders in a way that encourages sparsity.
However, these methods usually involve combinations
of activation functions, sampling steps and different
kinds of penalties, and are sometimes not guaranteed
to produce sparse representations for each input. For
example, in (Lee et al., 2007; Nair & Hinton, 2009),
a “lifetime sparsity” penalty function proportional to
the negative of the KL divergence between the hidden
unit marginals and the target sparsity probability is
added to the cost function. This results in sparse acti-
vation of hidden units across training points, but does
not guarantee that each input has a sparse represen-
tation.

The contributions of this paper are as follows. (i) We
describe “k -sparse autoencoders” and show that they
can be efficiently learnt and used for sparse coding.

http://arxiv.org/abs/1312.5663v2


k-Sparse Autoencoders

(ii) We explore how different sparsity levels (k) im-
pact representations and classification performance.
(iii) We show that by solely relying on sparsity as the
regularizer and as the only nonlinearity, we can achieve
much better results than the other methods, including
RBMs, denoising autoencoders (Vincent et al., 2008)
and dropout (Hinton et al., 2012). (iv) We demon-
strate that k -sparse autoencoders are suitable for pre-
training and achieve results comparable to state-of-
the-art on MNIST and NORB datasets.

In this paper, Γ is an estimated support set and Γc is
its complement. W † is the pseudo-inverse of W and
suppk(x) is an operator that returns the indices of
the k largest coefficients of its input vector. zΓ is
the vector obtained by restricting the elements of z
to the indices of Γ and WΓ is the matrix obtained by
restricting the columns of W to the indices of Γ.

2. Description of the Algorithm

2.1. The Basic Autoencoder

A shallow autoencoder maps an input vector x to a
hidden representation using the function z = f(Px+b),
parameterized by {P,b}. f is the activation function,
e.g., linear, sigmoidal or ReLU. The hidden represen-
tation is then mapped linearly to the output using
x̂ = Wz + b′. The parameters are optimized to mini-
mize the mean square error of ∥x̂−x∥2

2
over all training

points. Often, tied weights are used, so that P =W ⊺.

2.2. The k-Sparse Autoencoder

The k-sparse autoencoder is based on an autoencoder
with linear activation functions and tied weights. In
the feedforward phase, after computing the hidden
code z =W ⊺x+b, rather than reconstructing the input
from all of the hidden units, we identify the k largest
hidden units and set the others to zero. This can be
done by sorting the activities or by using ReLU hid-
den units with thresholds that are adaptively adjusted
until the k larges activities are identified. This re-
sults in a vector of activities with the support set of
suppk(W

⊺x+b). Note that once the k largest activities
are selected, the function computed by the network is
linear. So the only non-linearity comes from the se-
lection of the k largest activities. This selection step
acts as a regularizer that prevents the use of an overly
large number of hidden units when reconstructing the
input.

Once the weights are trained, the resulting sparse rep-
resentations may be used for learning to perform down-
stream classification tasks. However, it has been ob-
served that often, better results are obtained when the

sparse encoding stage used for classification does not
exactly match the encoding used for dictionary train-
ing (Coates & Ng, 2011). For example, while in k -
means, it is natural to have a hard-assignment of the
points to the nearest cluster in the encoding stage, it
has been shown in (Van Gemert et al., 2008) that soft
assignments result in better classification performance.
Similarly, for the k -sparse autoencoder, instead of us-
ing the k largest elements ofW ⊺x+b as the features, we
have observed that slightly better performance is ob-
tained by using the αk largest hidden units where α ≥ 1
is selected using validation data. So at the test time,
we use the support set defined by suppαk(W

⊺x + b).
The algorithm is summarized as follows.

k -Sparse Autoencoders:
Training:

1) Perform the feedforward phase and compute
z =W ⊺x + b

2) Find the k largest activations of z and set
the rest to zero.

z(Γ)c = 0 where Γ = supp
k
(z)

3) Compute the output and the error using the
sparsified z.

x̂ =Wz + b′

E = ∥x − x̂∥22
3) Backpropagate the error through the k largest
activations defined by Γ and iterate.

Sparse Encoding:

Compute the features h =W ⊺x + b. Find its αk
largest activations and set the rest to zero.

h(Γ)c = 0 where Γ = suppαk(h)

3. Analysis of the k-Sparse

Autoencoder

In this section, we explain how the k -sparse autoen-
coder can be viewed in the context of sparse coding
with incoherent matrices. This perspective sheds light
on why the k -sparse autoencoders work and why they
achieve invariant features and consequently good clas-
sification results. We first explain a sparse recovery al-
gorithm and then show that the k -sparse autoencoder
iterates between an approximation of this algorithm
and a dictionary update stage.

3.1. Iterative Thresholding with Inversion (ITI)

Iterative hard thresholding (Blumensath & Davies,
2009) is a class of low complexity algorithms, which
has recently been proposed for the reconstruction of
sparse signals. In this work, we use a variant called
“iterative thresholding with inversion” (Maleki, 2009).
Given a fixed x and W , starting from z0 = 0, ITI iter-
atively finds the sparsest solution of x =Wz using the



k-Sparse Autoencoders

following steps.

1. Support Estimation Step:

Γ = suppk(z
n +W ⊺(x −Wzn)) (2)

2. Inversion Step:

zn+1
Γ
=W †

Γ
x = (W ⊺

Γ
WΓ)−1W ⊺

Γ
x

zn+1
(Γ)c = 0

(3)

Assume H = W ⊺W − I and z0 is the true sparse so-
lution. The first step of ITI estimates the support
set as Γ = suppk(W

⊺x) = suppk(z0 + Hz0). If W

was orthogonal, we would have Hz0 = 0 and the algo-
rithm would succeed in the first iteration. But if W
is overcomplete, Hz0 behaves as a noise vector whose
variance decreases after each iteration. After estimat-
ing the support set of z as Γ, we restrict W to the
indices included in Γ and form WΓ. We then use the
pseudo-inverse of WΓ to estimate the non-zero values
minimizing ∥x−WΓzΓ∥22. Lastly, we refine the support
estimation and repeat the whole process until conver-
gence.

3.2. Sparse Coding with the k-Sparse

Autoencoder

Here, we show that we can derive the k -sparse autoen-
coder tarining algorithm by approximating a sparse
coding algorithm that uses the ITI algorithm jointly
with a dictionary update stage.

The conventional approach of sparse coding is to fix
the sparse code matrix Z, while updating the dictio-
nary. However, here, after estimating the support set
in the first step of the ITI algorithm, we jointly per-
form the inversion step of ITI and the dictionary up-
date step, while fixing just the support set of the sparse
code Z. In other words, we update the atoms of the
dictionary and allow the corresponding non-zero values
to change at the same time to minimize ∥X −WΓZΓ∥22
over both WΓ and ZΓ.

When we are performing sparse recovery with the ITI
algorithm using a fixed dictionary, we should perform
a fixed number of iterations to get the perfect recon-
struction of the signal. But, in sparse coding, since we
learnt a dictionary that is adapted to the signals, as
shown in Section 3.3, we can find the support set just
with the first iteration of ITI:

Γz = suppk(W
⊺x) (4)

In the inversion step of the ITI algorithm, once we
estimate the support set, we use the pseudo-inverse of

WΓ to find the non-zero values of the support set. The
pseudo-inverse of the matrix WΓ is a matrix, such as
PΓ, that minimizes the following cost function.

W
†
Γ
= arg min

PΓ

∥x −WΓzΓ∥22

= arg min
PΓ

∥x −WΓPΓx∥22
(5)

Finding the exact pseudo-inverse of WΓ is computa-
tionally expensive, so instead, we perform a single step
of gradient descent. The gradient with respect to PΓ

is found as follows:

∂∥x −WΓzΓ∥22
∂PΓ

=
∂∥x −WΓzΓ∥22

∂zΓ

x (6)

The first term of the right hand side of the Equation
(6) is the dictionary update stage, which is computed
as follows:

∂∥x −WΓzΓ∥22
∂zΓ

= (WΓzΓ − x)z⊺Γ (7)

Therefore, in order to approximate the pseudo-inverse,
we first find the dictionary derivative and then “back-
propagate” it to find the update of the pseudo-inverse.

We can view these operations in the context of an au-
toencoder with linear activations where P is the en-
coder weight matrix and W is the decoder weight ma-
trix. At each iteration, instead of back-propagating
through all the hidden units, we just back-propagate
through the units with the k largest activities, defined
by supp

k
(W ⊺x), which is the first iteration of ITI.

Keeping the k largest hidden activities and ignoring
the others is the same as forming WΓ by restricting
W to the estimated support set. Back-propagation on
the decoder weights is the same as gradient descent on
the dictionary and back-propagation on the encoder
weights is the same as approximating the pseudo-
inverse of the corresponding WΓ.

We can perform support estimation in the feedforward
phase by assuming P =W ⊺ (i.e., the autoencoder has
tied weights). In this case, support estimation can
be done by computing z =W ⊺x + b and picking the k
largest activations; the bias just accounts for the mean
and subtracts its contribution. Then the “inversion”
and “dictionary update” steps are done at the same
time by back-propagation through just the units with
the k largest activities.

In summary, we can view k -sparse autoencoders as the
approximation of a sparse coding algorithm which uses
ITI in the sparse recovery stage.



k-Sparse Autoencoders

3.3. Importance of Incoherence

The coherence of a dictionary indicates the degree of
similarity between different atoms or different collec-
tions of atoms. Since the dictionary is overcomplete,
we can represent each column of the dictionary as a
linear combination of other columns. But what inco-
herence implies is that we should not be able to repre-
sent a column as a sparse linear combination of other
columns and the coefficients of the linear combination
should be dense. For example, if two columns are ex-
actly the same, then the dictionary is highly coherent
since we can represent one of those columns as the
sparse linear combination of the rest of the columns.
A naive measure of coherence that has been proposed
in the literature is the mutual coherence µ(W )which is
defined as the maximum absolute inner product across
all the possible pairs of the atoms of the dictionary.

µ(W ) =max
i≠j
∣⟨wi,wj⟩∣ (8)

There is a close relationship between the coherency of
the dictionary and the uniqueness of the sparse solu-
tion of x = Wz. In (Donoho & Elad, 2003), it has
been proven that if k ≤ (1 + µ−1), then the sparsest
solution is unique.

We can show that if the dictionary is incoherent
enough, there is going to be an attraction ball around
the signal x and there is only one unique sparse lin-
ear combination of the columns that can get into this
attraction ball. So even if we perturb the input with
a small amount of noise, translation, rotation, etc.,
we can still achieve perfect reconstruction of the orig-
inal signal and the sparse features are always roughly
conserved. Therefore, incoherency of the dictionary
is a measure of invariance and stability of the fea-
tures. This is related to the denoising autoencoder
(Vincent et al., 2008) in which we achieve invariant
features by trying to reconstruct the original signal
from its noisy versions.

Here we show that if the dictionary is incoherent
enough, the first step of the ITI algorithm is sufficient
for perfect sparse recovery.

Theorem 3.1. Assume x = Wz and the columns of
the dictionary have unit ℓ2-norm. Also without loss of
generality, assume that the non-zero elements of z are
its first k elements and are sorted as z1 ≥ z2 ≥ ... ≥ zk .
Then, if kµ ≤ zk

2z1
, we can recover the support set of z

using suppk(W
⊺x).

Proof : Let us assume 0 ≤ i ≤ k and y =W ⊺x. Then,
we can write:

yi = zi +
k

∑
j=1,j≠i

⟨wi,wj⟩zj ≥ zi − µ
k

∑
j=1,j≠i

zj ≥ zk − kµz1

(9)
On the other hand:

max
i>k
{yi} =max

i>k

⎧⎪⎪
⎨
⎪⎪⎩

k

∑
j=1

⟨wi,wj⟩zj
⎫⎪⎪
⎬
⎪⎪⎭
≤ kµz1 (10)

So if kµ ≤ zk
2z1

, all the first k elements of y are guaran-
teed to be greater than the rest of its elements.

As we can see from Theorem 3.1, the chances of finding
the true support set with the encoder part of the k -
sparse autoencoder depends on the incoherency of the
learnt dictionary. As the k -sparse autoencoder con-
verges (i.e., the reconstruction error goes to zero), the
algorithm learns a dictionary that satisfies x ≈Wz, so
the support set of z can be estimated using the first
step of ITI. Since suppk(W

⊺x) succeeds in finding the
support set when the algorithm converges, the learnt
dictionary must be sufficiently incoherent.

4. Experiments

In this section, we evaluate the performance of k -
sparse autoencoders in both unsupervised learning and
in shallow and deep discriminative learning tasks.

4.1. Datasets

We use the MNIST handwritten digit dataset, which
consists of 60,000 training images and 10,000 test im-
ages. We randomly separate the training set into
50,000 training cases and 10,000 cases for validation.

We also use the small NORB normalized-uniform
dataset (LeCun et al., 2004), which contains 24,300
training examples and 24,300 test examples. This
database contains images of 50 toys from 5 generic cat-
egories: four-legged animals, human figures, airplanes,
trucks, and cars. Each image consists of two channels,
each of size 96 × 96 pixels. We take the inner 64 × 64
pixels of each channel and resize it using bicubic in-
terpolation to the size of 32× 32 pixels from which we
form a vector with 2048 dimensions as the input. Data
points are subtracted by the mean and divided by the
standard deviation along each input dimension across
the whole training set to normalize the contrast. The
training set is separated into 20,000 for training and
4,300 for validation.

We also test our method on natural image patches ex-
tracted from CIFAR-10 dataset. We randomly extract
1000000 patches of size 8×8 from the 50000 32×32 im-



k-Sparse Autoencoders

ages of CIFAR-10. Each patch is then locally contrast-
normalized and ZCA whitened. This preprocessing
pipeline is the same as the one used in (Coates et al.,
2011) for feature extraction.

4.2. Training of k-Sparse Autoencoders

4.2.1. Scheduling of the Sparsity Level

When we are enforcing low sparsity levels in k -sparse
autoencoders (e.g., k=15 on MNIST), one issue that
might arise is that in the first few epochs, the al-
gorithm greedily assigns individual hidden units to
groups of training cases, in a manner similar to k-
means clustering. In subsequent epochs, these hidden
units will be picked and re-enforced and other hidden
units will not be adjusted. That is, too much sparsity
can prevent gradient back-propagation from adjusting
the weights of these other ‘dead’ hidden units. We can
address this problem by scheduling the sparsity level
over epochs as follows.

Suppose we are aiming for a sparsity level of k = 15.
Then, we start off with a large sparsity level (e.g.
k = 100) for which the k -sparse autoencoder can train
all the hidden units. We then linearly decrease the
sparsity level from k = 100 to k = 15 over the first
half of the epochs. This initializes the autoencoder in
a good regime, for which all of the hidden units have
a significant chance of being picked. Then, we keep
k = 15 for the second half of the epochs. With this
scheduling, we can train all of the filters, even for low
sparsity levels.

4.2.2. Training Hyper-parameters

We optimized the model parameters using stochastic
gradient descent with momentum as follows.

vk+1 =mkvk − ηk∇f(xk)

xk+1 = xk + vk

(11)

Here, vk is the velocity vector, mk is the momentum
and ηk is the learning rate at the k -th iteration. We
also use a Gaussian distribution with a standard devi-
ation of σ for initialization of the weights. We use dif-
ferent momentum values, learning rates and initializa-
tions based on the task and the dataset, and validation
is used to select hyperparameters. In the unsupervised
MNIST task, the values were σ = 0.01 , mk = 0.9 and
ηk = 0.01, for 5000 epochs. In the supervised MNIST
task, training started with mk = 0.25 and ηk = 1, and
then the learning rate was linearly decreased to 0.001
over 200 epochs. In the unsupervised NORB task, the
values were σ = 0.01, mk = 0.9 and ηk = 0.0001, for
5000 epochs. In the supervised NORB task, training

started with mk = 0.9 and ηk = 0.01, and then the
learning rate was linearly decreased to 0.001 over 200
epochs.

4.2.3. Implementations

While most of the conventional sparse coding algo-
rithms require complex matrix operations such as ma-
trix inversion or SVD decomposition, the k -sparse au-
toencoders only need matrix multiplications and sort-
ing operations in both dictionary learning stage and
the sparse encoding stage. (For a parallel, distributed
implementation, the sorting operation can be replaced
by a method that recursively applies a threshold until
k values remain.) We used an efficient GPU implemen-
tation obtained using the publicly available gnumpy
library (Tieleman, 2010) on a single Nvidia GTX 680
GPU.

4.3. Effect of Sparsity Level

In k -sparse autoencoders, we are able to tune the value
of k to obtain the desirable sparsity level which makes
the algorithm suitable for a wide variety of datasets.
For example, one application could be pre-training a
shallow or deep discriminative neural network. For
large values of k (e.g., k = 100 on MNIST), the algo-
rithm tends to learn very local features as is shown in
Figure 1a and 2a. These features are too primitive to
be used for classification using a shallow architecture
since a naive linear classifier does not have enough ca-
pacity to combine these features and achieve a good
classification rate. However, these features could be
used for pre-training deep neural nets.

As we decrease the the sparsity level (e.g., k = 40 on
MNIST), the output is reconstructed using a smaller
number of hidden units and thus the features tend to
be more global, as can be seen in Figure 1b,1c and 2b.
For example, in the MNIST dataset, the lengths of the
strokes increase when the sparsity level is decreased.
These less local features are suitable for classification
using a shallow architecture. Nevertheless, forcing too
much sparsity (e.g., k = 10 on MNIST), results in fea-
tures that are too global and do not factor the input
into parts, as depicted Figure 1d and 2c.

Fig. 3 shows the visualization of filters of the k -sparse
autoencoder with 1000 hidden units and sparsity level
of k = 50 learnt from random image patches extracted
from CIFAR-10 dataset. We can see that the k -sparse
autoencoder has learnt localized Gabor filters from
natural image patches.

Fig. 4 plots histograms of the hidden unit activities
for various unsupervised learning algorithms, includ-



k-Sparse Autoencoders

(a) k = 70

(b) k = 40

(c) k = 25

(d) k = 10

Figure 1. Filters of the k -sparse autoencoder for different sparsity levels k, learnt from MNIST with 1000 hidden units.

(a) k = 200

(b) k = 150

(c) k = 50

Figure 2. Filters of the k -sparse autoencoder for different sparsity levels k, learnt from NORB with 4000 hidden units.



k-Sparse Autoencoders

Error Rate
Raw Pixels 7.20%
RBM 1.81%
Dropout Autoencoder (50% hidden) 1.80%
Denoising Autoencoder 1.95%
(20% input dropout)

Dropout + Denoising Autoencoder 1.60%
(20% input and 50% hidden)

k -Sparse Autoencoder, k = 40 1.54%
k -Sparse Autoencoder, k = 25 1.35%
k -Sparse Autoencoder, k = 10 2.10%

Table 1. Performance of unsupervised learning methods
(without fine-tuning) with 1000 hidden units on MNIST.

Error Rate
Raw Pixels 23%
RBM (weight decay) 10.6%
Dropout Autoencoder 10.1%
Denoising Autoencoder 9.5%
(20% input dropout)

k -Sparse Autoencoder, k = 200 10.4%
k -Sparse Autoencoder, k = 150 8.6%
k -Sparse Autoencoder, k = 75 9.5%

Table 2. Performance of unsupervised learning
methods (without fine-tuning) with 4000 hidden
units on NORB.

ing the k -sparse autoencoder (k=70 and k=15), ap-
plied to the MNIST data. This figure contrasts the
sparsity achieved by the k -sparse autoencoder with
that of other algorithms.

Figure 3. Filters of k -sparse autoencoder with 1000 hidden
units and k = 50, learnt from CIFAR-10 random patches.

4.4. Unsupervised Feature Learning Results

In order to compare the quality of the features learnt
by our algorithm with those learnt by other unsuper-
vised learning methods, we first extracted features us-
ing each unsupervised learning algorithm. Then we
fixed the features and trained a logistic regression clas-
sifier using those features. The usefulness of the fea-
tures is then evaluated by examining the error rate of
the classifier.

We trained a number of architectures on the MNIST
and NORB datasets, including RBM, dropout autoen-
coder and denoising autoencoder. In dropout, after
finding the features using dropout regularization with
a dropout rate of 50%, we used all of the hidden units
as the features (this worked best). For the denois-
ing autoencoder, after training the network by drop-
ping the input pixels with a rate of 20%, we used

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
Log histogram of hidden activities

ReLU Autoencoder

Dropout Autoencoder, 50% hidden and 20% input

k-Sparse Autoencoder, k=70

k-Sparse Autoencoder, k=15

Figure 4. Histogram of hidden unit activities for various
unsupervised learning methods.

all of the uncorrupted input pixels to find the fea-
tures for classification (this worked best). In the k -
sparse autoencoder, after training the dictionary, we
used h = suppαk(W

⊺x + b) to find the features as ex-
plained in Section 2.2, where α was determined using
validation data. Results for different architectures are
compared in Tables 1, 2. We can see that the perfor-
mance of our k -sparse autoencoder is better than the
rest of the algorithms. In our algorithm, the best re-
sult is achieved by k = 25, α = 3 with 1000 hidden units
on MNIST dataset and by k = 150, α = 2 with 4000
hidden units on NORB dataset.

4.5. Shallow Supervised Learning Results

In supervised learning, it is a common practice
to use the encoder weights learnt by an unsuper-
vised learning method to initialize the early layers
of a multilayer discriminative model (Erhan et al.,
2010). The back-propagation algorithm is then used



k-Sparse Autoencoders

Error
Without Pre-Training 1.60%
RBM + F.T. 1.24%
Shallow Dropout AE + F.T. 1.05%
(%50 hidden)

Denoising AE + F.T. 1.20%
(%20 input dropout)

Deep Dropout AE + F.T. 0.85%
(Layer-wise pre-training, %50 hidden)

k -Sparse AE + F.T. 1.08%
(k=25)

Deep k -Sparse AE + F.T. 0.97%
(Layer-wise pre-training)

Table 3. Performance of supervised learning methods on
MNIST. Pre-training was performed using the correspond-
ing unsupervised learning algorithm with 1000 hidden units,
and then the model was fine-tuned.

Error
Without Pre-Training 12.7%
DBN 8.3%
DBM 7.2%
third-order RBM 6.5%
Shallow Dropout AE + F.T. 8.2%
(%50 hidden)

Shallow Denoising AE + F.T. 7.9%
(%20 input dropout)

Deep Dropout AE + F.T. 7.0%
(Layer-wise pre-training, %50 hidden)

Shallow k -Sparse AE + F.T. 7.8%
(k=150)

Deep k -Sparse AE + F.T. 7.4%
(k=150, Layer-wise pre-training)

Table 4. Performance of supervised learning
methods on NORB. Pre-training was performed
using the corresponding unsupervised learning
algorithm with 4000 hidden units, and then the
model was fine-tuned.

to adjust the weights of the last hidden layer and
also to fine-tune the weights in the previous layers.
This procedure is often referred to as discriminative
fine-tuning. In this section, we report results us-
ing unsupervised learning algorithms such as RBMs,
DBNs (Salakhutdinov & Larochelle, 2010), DBMs
(Salakhutdinov & Larochelle, 2010), third-order RBM
(Nair & Hinton, 2009), dropout autoencoders, denois-
ing autoencoders and k -sparse autoencoders to ini-
tialize a shallow discriminative neural network for
the MNIST and NORB datasets. We used back-
propagation to fine-tune the weights. The regulariza-
tion method used in the fine-tuning stage of different
algorithms is the same as the one used in the train-
ing of the corresponding unsupervised learning task.
For instance, we fine-tuned the weights obtained from
dropout autoencoder with dropout regularization or in
denoising autoencoder, we fine-tuned the discrimina-
tive neural net by adding noise to the input. In a sim-
ilar manner, in the fine-tuning stage of the k -sparse
autoencoder, we used the αk largest hidden units in
the corresponding discriminative neural network, as
explained in Section 2.2. Tables 3 and 4 reports the
error rates obtained by different methods.

4.6. Deep Supervised Learning Results

The k -sparse autoencoder can be used as a building
block of a deep neural network, using greedy layer-
wise pre-training (Bengio et al., 2007). We first train
a shallow k -sparse autoencoder and obtain the hidden
codes. We then fix the features and train another k -

sparse autoencoder on top of them to obtain another
set of hidden codes. Then we use the parameters of
these autoencoders to initialize a discriminative neural
network with two hidden layers.

In the fine-tuning stage of the deep neural net, we first
fix the parameters of the first and second layers and
train a softmax classifier on top of the second layer.
We then hold the weights of the first layer fixed and
train the second layer and softmax jointly using the
initialization of the softmax that we found in the pre-
vious step. Finally, we jointly fine-tune all of the layers
with the previous initialization. We have observed that
this method of layer-wise fine-tuning can improve the
classification performance compared to the case where
we fine-tune all the layers at the same time.

In all of the fine-tuning steps, we keep the αk largest
hidden codes, where k = 25, α = 3 in MNIST and k =
150, α = 2 in NORB in both hidden layers. Tables 3
and 4 report the classification results of different deep
supervised learning methods.

5. Conclusion

In this work, we proposed a very fast sparse coding
method called k -sparse autoencoder, which achieves
exact sparsity in the hidden representation. The main
message of this paper is that we can use the result-
ing representations to achieve state-of-the-art classifi-
cation results, solely by enforcing sparsity in the hid-
den units and without using any other nonlinearity or
regularization. We also discussed how the k -sparse au-
toencoder could be used for pre-training shallow and



k-Sparse Autoencoders

deep supervised architectures.

6. Acknowledgment

We would like to thank Andrew Delong, Babak Ali-
panahi and Lei Jimmy Ba for the valuable comments.

References

Aharon, Michal, Elad, Michael, and Bruckstein, Al-
fred. K-svd: Design of dictionaries for sparse repre-
sentation. Proceedings of SPARS, 5:9–12, 2005.

Bengio, Yoshua, Lamblin, Pascal, Popovici, Dan, and
Larochelle, Hugo. Greedy layer-wise training of deep
networks. Advances in neural information process-
ing systems, 19:153, 2007.

Blumensath, Thomas and Davies, Mike E. Iterative
hard thresholding for compressed sensing. Applied
and Computational Harmonic Analysis, 27(3):265–
274, 2009.

Coates, Adam and Ng, Andrew. The importance of
encoding versus training with sparse coding and vec-
tor quantization. In Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML-11),
pp. 921–928, 2011.

Coates, Adam, Ng, Andrew Y, and Lee, Honglak. An
analysis of single-layer networks in unsupervised fea-
ture learning. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 215–223, 2011.

Donoho, David L and Elad, Michael. Optimally sparse
representation in general (nonorthogonal) dictionar-
ies via 1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202, 2003.

Engan, Kjersti, Aase, Sven Ole, and Hakon Husoy,
J. Method of optimal directions for frame design.
In Acoustics, Speech, and Signal Processing, 1999.
Proceedings., 1999 IEEE International Conference
on, volume 5, pp. 2443–2446. IEEE, 1999.

Erhan, Dumitru, Bengio, Yoshua, Courville, Aaron,
Manzagol, Pierre-Antoine, Vincent, Pascal, and
Bengio, Samy. Why does unsupervised pre-training
help deep learning? The Journal of Machine Learn-
ing Research, 11:625–660, 2010.

Gregor, Karol and LeCun, Yann. Learning fast ap-
proximations of sparse coding. In Proceedings of the
27th International Conference on Machine Learning
(ICML-10), pp. 399–406, 2010.

Hinton, Geoffrey E, Srivastava, Nitish, Krizhevsky,
Alex, Sutskever, Ilya, and Salakhutdinov, Rus-
lan R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Kavukcuoglu, Koray, Ranzato, Marc’Aurelio, and Le-
Cun, Yann. Fast inference in sparse coding al-
gorithms with applications to object recognition.
arXiv preprint arXiv:1010.3467, 2010.

LeCun, Yann, Huang, Fu Jie, and Bottou, Leon.
Learning methods for generic object recognition
with invariance to pose and lighting. In Computer
Vision and Pattern Recognition, CVPR, volume 2,
pp. II–97. IEEE, 2004.

Lee, Honglak, Ekanadham, Chaitanya, and Ng, An-
drew. Sparse deep belief net model for visual area
v2. In Advances in neural information processing
systems, pp. 873–880, 2007.

Maleki, Arian. Coherence analysis of iterative thresh-
olding algorithms. In Communication, Control, and
Computing, 2009. Allerton 2009. 47th Annual Aller-
ton Conference on, pp. 236–243. IEEE, 2009.

Nair, Vinod and Hinton, Geoffrey E. 3d object recog-
nition with deep belief nets. In Advances in Neu-
ral Information Processing Systems, pp. 1339–1347,
2009.

Olshausen, Bruno A and Field, David J. Sparse coding
with an overcomplete basis set: A strategy employed
by v1? Vision research, 37(23):3311–3325, 1997.

Salakhutdinov, Ruslan and Larochelle, Hugo. Effi-
cient learning of deep boltzmann machines. In In-
ternational Conference on Artificial Intelligence and
Statistics, pp. 693–700, 2010.

Tieleman, Tijmen. Gnumpy: an easy way to use gpu
boards in python. Department of Computer Science,
University of Toronto, 2010.

Tropp, Joel A and Gilbert, Anna C. Signal recovery
from random measurements via orthogonal match-
ing pursuit. Information Theory, IEEE Transac-
tions on, 53(12):4655–4666, 2007.

Van Gemert, Jan C, Geusebroek, Jan-Mark, Veenman,
Cor J, and Smeulders, Arnold WM. Kernel code-
books for scene categorization. In Computer Vision–
ECCV 2008, pp. 696–709. Springer, 2008.

Vincent, Pascal, Larochelle, Hugo, Bengio, Yoshua,
and Manzagol, Pierre-Antoine. Extracting and com-
posing robust features with denoising autoencoders.
In Proceedings of the 25th international conference
on Machine learning, pp. 1096–1103. ACM, 2008.


